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Abstract
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The productivity of the world’s natural resources is critically 
dependent on a variety of highly uncertain factors, which 
obscure individual investors and governments that seek to 
make long-term, sometimes irreversible investments in their 
exploration and utilization. These dynamic considerations 
are poorly represented in disaggregated resource models, 
as incorporating uncertainty into large-dimensional prob-
lems presents a challenging computational task. This study 
introduces a novel numerical method to solve large-scale 
dynamic stochastic natural resource allocation problems 

that cannot be addressed by conventional methods. The 
method is illustrated with an application focusing on the 
allocation of global land resource use under stochastic crop 
yields due to adverse climate impacts and limits on further 
technological progress. For the same model parameters, the 
range of land conversion is considerably smaller for the 
dynamic stochastic model as compared to deterministic sce-
nario analysis. The scenario analysis can thus significantly 
overstate the magnitude of expected land conversion under 
uncertain crop yields.

This paper is a product of the Development Research Group, Development Economics. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may 
be contacted at jsteinbuks@worldbank.org.   
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1 Introduction

Understanding the allocation of the world’s natural resources over the course of the next

century is an important research problem for agricultural and environmental economists.

Analyzing natural resources use in the long run involves a complex interplay of di↵erent

factors. These factors include, among others, continuing population increases, shifting di-

ets among the poorest populations in the world, increasing the production of renewable

energy, including biofuels, and growing demand for ecosystem services, including forest car-

bon sequestration (Foley et al., 2011). The problem is further confounded by faster than

expected climate change, which is altering the biophysical environment of agriculture and

forestry. Moreover, highly uncertain future productivities and valuations of ecosystem ser-

vices, coupled with medium- to long-term irreversibilities in the extraction of nonrenewable

or partially renewable resources, such as natural forests,1 give rise to a challenging problem

of decision-making under uncertainty.

While there is a large body of economic literature analyzing the problem of natural

resource extraction and utilization under uncertainty theoretically or using stylized compu-

tational models (see e.g., Miranda and Fackler (2004), Tsur and Zemel (2014) and references

therein), quantifying the e↵ects of uncertainty on natural resource use in a more realistic

setting remains a challenging problem. This is because natural resource allocation prob-

lems, like environmental policy problems in general, involve highly nonlinear structure and

damage functions, important irreversibilities, and long time horizons (Pindyck, 2007). Com-

putational integrated models of the economy and environment are the standard workhorse

mechanisms for modeling the long term allocation of the world’s natural resources, including

particularly di�cult land use problems.2 These models have the important advantage of

detailed spatial and sectoral (particularly, energy and agricultural sector) coverage, which

allows them to capture a broad range of responses to changes in demand and supply factors

a↵ecting utilization of natural resources. However, given the high computational complexity

of these models, they are typically either static or based on myopic expectations, whereby

decisions about production, consumption and resource extraction and conversion are made

only on the basis of information in the period of the decision (Babiker et al., 2009). These

models, therefore, have limited ability to address important intertemporal questions such as,

for example, a dynamic trade-o↵ between conservation, carbon sequestration, and renewable

o↵sets for fossil fuels. Among the few forward-looking, dynamic economy and environment

models, none explicitly incorporates uncertainty into the determination of the optimal path

of natural resource use.3 This is because introducing uncertainty into these models is con-

fined by an array of computational obstacles that are very di�cult (e.g., high dimensionality

and kinks caused by occasionally binding constraints), if not impossible, to address using

1The biophysical and ecological literature suggests that restoration of forest structure and plant species
takes at least 30–40 years and usually many more decades (Chazdon, 2008), costs several to $10,000 per
hectare (Nesshöver et al., 2009), and is only partially successful in achieving reference conditions (Benayas
et al., 2009).

2For a detailed overview of these models and their applications to natural resources and land use problems,
see, e.g., Füssel (2009), Schmitz et al. (2014), and Nikas et al. (2019).

3Several recent studies, most notably, Cai and Lontzek (2019) have successfully integrated uncertainty
about economic and climate outcomes in a stochastic integrated assessment climate-economy framework.
For a review of this related literature, see Cai (2019).
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standard computational methods in economics such as projection methods and value func-

tion iteration (see, e.g., Judd 1998; Miranda and Fackler 2004; Cai and Judd 2014; Cai

2019). To the extent that uncertainty in these models is considered, this is only through

parametric or probabilistic sensitivity analysis or the use of alternative scenarios. Therefore,

the high-dimensional resource use models have not e↵ectively dealt with optimal extraction

and conversion decisions along the uncertain path of key drivers a↵ecting resource allocation

in the face of costly reversal of conversion decisions.

In this study, we seek to address this important limitation of the economy-environment

modeling of natural resource use. In doing so, we build on Cai et al. (2017), who have

introduced a nonlinear certainty equivalent approximation method (NLCEQ) for solving

large-scale infinite horizon stationary dynamic stochastic problems and demonstrated how

this method could be used to achieve the accurate solution to a stylized stationary dynamic

stochastic land use problem. While the original NLCEQ method can successfully solve

many complicated problems in other fields of economics, particularly, macroeconomics, it

has very limited applicability for solving environmental and resource economics problems.

This is because many stochastic problems of utilization of natural resources feature nonsta-

tionary stochastic trends, such as, e.g., climate or technological trajectories, and some never

converge to a stationary state. This paper introduces a novel algorithm, called Extended NL-

CEQ (ENLCEQ), that advances the original NLCEQ work to solve nonstationary dynamic

stochastic problems and apply it to solve more complex dynamic stochastic multi-sectoral

resource use problems with exogenous trends. Similar to the original NLCEQ method,

the ENLCEQ method approximates the true solution to the underlying dynamic stochastic

problem with globally valid, nonlinear certainty-equivalent decision rules. These rules are

then used to generate simulation paths for nonstationary infinite or finite horizon resource

use problems. In this paper, we show that the ENLCEQ approximation is highly accurate

and achieves stable numerical solutions.

We illustrate the ENLCEQ method to solve for the dynamic optimal global land use

allocation, which is a highly complicated resource use problem that features multiple cross-

sectoral and dynamic trade-o↵s. Specifically, we apply the method to a global land use

model nicknamed FABLE (Forest, Agriculture, and Biofuels in a Land use model with

Environmental services) in the face of uncertainty.4 FABLE is a dynamic, forward-looking

global multi-sectoral partial equilibrium model designed to analyze the evolution of global

land use over the coming century. Prior applications of that model (Steinbuks and Hertel,

2013; Hertel et al., 2013, 2016; Steinbuks and Hertel, 2016) analyze competition for scarce

global land resource in light of growing demand for food, energy, forestry and environmental

services, and evaluate key drivers and policies a↵ecting global land use allocation. All

these applications, however, assume perfect foresight, and treat uncertainty in a parametric

fashion, thus ignoring the impact of future uncertainties on the optimal allocation of global

land use.

By way of illustration, we choose to focus on uncertainty emanating from crop produc-

tivity over the next century. Along with energy prices, regulatory policies, and technological

4To evaluate the method’s accuracy, we also apply it to a simpler optimal growth model shown in the
online appendix.
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change in food, timber and biofuels industries, this is one of four core uncertainties a↵ecting

competition for global land use (Steinbuks and Hertel, 2013). To quantify the uncertainty

in agricultural yields, we construct stochastic crop productivity index that captures two key

uncertainty sources: technological progress and global climate change (Lobell et al., 2009;

Licker et al., 2010; Foley et al., 2011).5 Following Rosenzweig et al. (2014), we use projec-

tions from climate and crop simulation models, as well as the survey of recent agro-economic

and biophysical studies to calibrate the index.

We simulate the results of the perfect foresight model under di↵erent realizations of the

crop productivity index, focusing our attention on the current century. We then compare

and contrast them with the results of the dynamic stochastic model, where the uncertainty

in crop yields is brought to the model’s optimization stage. When the uncertainty in crop

productivity is incorporated into the model, we see an additional redistribution of land

resources aimed at o↵setting the impact of potentially lower yields. Owing to intertempo-

ral substitution, some of that redistribution takes place even in the absence of the actual

changes in the states of climate or technology a↵ecting crop yields. Moreover, the range of

these alternative optimal paths of cropland is considerably smaller than the magnitude of

possible land conversion resulting from the scenario analysis based on deterministic model

simulations. This result indicates that the scenario analysis may significantly overstate the

magnitude of expected agricultural land conversion under uncertain crop yields.

Besides the methodological innovation, our study also contributes to the growing envi-

ronmental economics literature that analyzes the intertemporal allocation of land and other

natural resources under uncertainty and irreversibility constraints. Most of that literature

focuses on a particular type of resource or sector, where intertemporal issues are significant

and cannot be ignored. One example of this literature is forestry management in the con-

text of uncertain fire risks and climate mitigation policies (Sohngen and Mendelsohn, 2003,

2007; Daigneault et al., 2010). Another example is natural land conservation decisions un-

der irreversible biodiversity losses (Conrad, 1997, 2000; Bulte et al., 2002; Leroux et al.,

2009). While these models are undoubtedly helpful for understanding the broad implica-

tions of uncertainty on the intertemporal allocation of land resources, they fail to account

for the e↵ect of uncertainty in supply and demand drivers on the optimal allocation of land

resources in the long run. Our study is perhaps most closely related to the recent work of

Lanz et al. (2017) who develop a two-sector stochastic Schumpeterian growth model with

the endogenous allocation of global land use. They find, like our paper does, that optimal

allocation of global land use requires more cropland conversion when the uncertainty in

agricultural productivity is present. Lanz et al. (2017), however, focused on endogenous

population dynamics, labor allocation, and technological progress, whereas our paper is

concerned about the endogenous allocation of multiple types of land use and correspond-

ing land-based goods and services. Our paper also advances on methodological grounds

by introducing a novel algorithm that overcomes the computational di�culties of solving

multidimensional stochastic land use models, which made Lanz et al. (2017) significantly

5Climate change will likely a↵ect the productivity of other land resources, such as forestland. Several
recent modeling studies (see, e.g., Tian et al. (2016) and references therein) have suggested that climate
change is likely to result in higher forest growth and greater timber yields, as well as in more forest dieback,
with the net e↵ects varying over time and space. Incorporating these e↵ects is beyond the scope of this
study and is left for future research.

4



simplify their model by assuming that their binary shocks occur only in three time periods.

2 Extended NLCEQ

Following the standard notation in the literature, let St be a vector of state variables (e.g.,

natural resource stock), and at be a vector of decision variables (e.g., resource extraction,

transformation, and final consumption) at each time t. The transition law of the state vector

S is

St+1 = Gt(St,at, ✏t)

where ✏t is a serially uncorrelated random vector process,6 and Gt is a vector of functions:

its i-th element, Gt,i, returns the i-th state variable at t + 1: St+1,i. For simplicity, we

assume the mean of ✏t is 0.7

We solve the following social planner’s problem:

max
at2Dt(St)

E
(

T⇤�1X

t=0

�tUt (St,at) + �T
⇤
VT⇤(ST⇤)

)
(1)

s.t. St+1 = Gt(St,at, ✏t), t = 0, 1, 2, ..., T ⇤ � 1,

S0 given

where Ut is a utility function, � 2 (0, 1) is the discount factor, E is the expectation operator,

T ⇤ is the horizon (T ⇤ = 1 if it is an infinite-horizon problem), VT⇤(ST⇤) is a given terminal

value function depending on the terminal state ST⇤ (it is zero everywhere for an infinite-

horizon problem), and Dt(St) is a feasible set of actions at at time t. And we assume that

the initial state S0 is given, as it can usually be observed or estimated.

In most economic problems of resource use under uncertainty, the social planner’s prob-

lem cannot be solved analytically, although certain inferences about potential e↵ects of

uncertainty can be made from more stylized models.8 Numerical dynamic programming

with value function iteration (see, e.g., Cai and Judd 2014; Cai 2019) is a typical method to

solve these dynamic stochastic problems. However, numerical dynamic programming faces

challenging problems such as high dimensionality of state space, shape-preservation of value

functions (Cai and Judd, 2013), and occasionally binding constraints. These challenges

are common in modeling natural resource use and are hard to address even with the most

advanced methods, such as parallel dynamic programming (Cai et al., 2015). Below we in-

troduce a new algorithm, called the extended nonlinear certainty equivalent approximation

6In dynamic models with serially correlated random variables, they should be exogenous state variables,
and we can use an uncorrelated vector ✏t in their transition laws.

7For notational simplicity we keep the same mathematical representation of a transition function even
if some of its elements are redundant. For example, if Gt,i is deterministic, we still denote it as St+1,i =

Gt,i(St,at, ✏t) even though St+1,i = eGt,i(St,at) + 0 · ✏t. Similarly, if there are some unused elements of ✏t
or some redundant arguments in a function Gt,j , we can multiply them by zero in Gt,j and thus still use
St+1,j = Gt,j(St,at, ✏t) .

8Pindyck (1984) shows that stochastic fluctuations add a risk premium to the rate of return required to
keep a unit of renewable resource stock in situ. Conrad (2000) demonstrates that the presence of uncertainty
over benefits and opportunity costs of extracting natural forest land attaches option value for wilderness
preservation, and may require a higher return on development to induce deforestation. Daigneault et al.
(2010) argue that the presence of uncertainty over forest fire requires more frequent thinning and shorter
rotations of managed forests.
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method (ENLCEQ), that extends the original NLCEQ method of Cai et al. (2017) designed

primarily for solving dynamic stochastic stationary problems in macroeconomics. Later in

this study, we apply this method to solve a complicated dynamic stochastic land use prob-

lem, that features high dimensionality, occasionally binding constraints, and time-varying

exogenous trends, with acceptable accuracy. It is important to note that although the focus

of this study is on stochastic natural resource allocation problems, the ENLCEQ method

is a general method that can be applied to approximately and numerically solve dynamic

stochastic problems in other areas of the economics discipline.

The original NLCEQ method computes globally valid, nonlinear certainty-equivalent

decision rules, and then uses them to generate simulation paths for stationary infinite horizon

problems. For non-stationary problems, this involves computing such rules at each period t

along time-variant exogenous paths a↵ecting decisions. However, computing all these rules

can be very time-consuming and unnecessary if our primary goal is to obtain simulation

paths and their distributions until a time of interest, T , even a long one (in environmental

and climate change economics, for example, we are often interested in solutions for the

coming century, and set the time of interest to 100 years and the problem horizon of more

than 300 years to avoid a large impact of terminal conditions). Instead of solving for optimal

decisions for all possible states at each time, we can approximately solve for optimal decisions

for those simulated states along simulated paths. Thus, we introduce the following ENLCEQ

algorithm.

Algorithm 1 ENLCEQ for Dynamic Stochastic Problems with Time-Variant Exogenous
Paths

Initialization. Given the initial state S0 and a time of interest T , choose a finite bT � T
and an approximate terminal value function eVbT (SbT ) for an infinite-horizon problem,

or let bT = T ⇤ � T and eVbT ⌘ VT⇤ for a finite horizon problem with T ⇤ < 1 as the
terminal time. Simulate a sequence of ✏t to get m paths, denoted ✏it for path i, from
t = 0 to bT . For each i = 1, ...,m, repeat the following steps to get m simulated paths
of states and decisions to obtain their distributions.

Step 1. Let Si
0 = S0. For s = 0, 1, 2, ..., T , iterate through steps 2 and 3.

Step 2. Solve the following deterministic model starting from time s:

max
at2Dt(St)

bT�1X

t=s

�t�sUt (St,at) + �
bT�s eVbT (SbT ) (2)

s.t. St+1 = Gt(St,at, 0), t = s, s+ 1, s+ 2, ...

Ss = Si
s

Step 3. Set Si
s+1 = Gt(Si

s,a
i
s, ✏

i
s), where ais is the optimal decision at time s of the problem

(2).

Algorithm 1 obtains simulated pathways of optimal decisions and states. Its step 2

applies the original idea of NLCEQ method: for a given state at time s, Si
s, we replace all

future stochastic variables by their corresponding expectations conditional on the current

6



state Si
s,

9 and convert the dynamic stochastic problem (1) into a deterministic finite-horizon

dynamic problem (2).

For an infinite-horizon problem, step 2 changes it to be a finite-horizon problem with a

large horizon bT . This will have little impact on the solutions within the period of interest:

[0, T ], because (i) most of infinite-horizon dynamic economic models assume that the system

asymptotically evolves to its stationary state; (ii) the discount factor � < 1 makes the

terms �t�TUt (St,at) to have small magnitude for t � bT with a large bT and a feasible

and reasonable sequence of (St,at) so that the terms after bT has little changes on the

objective function; (iii) we choose bT to be large enough such that any larger bT will almost

have no change in the solutions in the periods of interest [0, T ]; and (iv) we may choose a

good approximate terminal value function such as eVbT (SbT ) = UbT

⇣
SbT , ea

⇤
bT
(SbT )

⌘
/(1 � �) to

approximate the true value function at bT : VbT (SbT ) = max
P1

t=bT �t�
bTUt (St,at) subject to

the transition law of St and the feasibility constraint for at, where ea⇤bT (SbT ) is a good guess

of the true optimal policy function at bT .
In step 2 of Algorithm 1, we drop the uncertainty in the transition law of St of the original

problem (1) by replacing ✏t by its zero mean, so that the expectation in the objective function

of (1) is cancelled. We call this a certainty equivalent approximation.10

We implement the optimal control method to solve (2) numerically, that is, we view

(2) as a large-scale nonlinear constrained optimization problem with {ait : t � s} and

{Si
t : t � s} as its decision and state variables. The problem can be directly solved with

an appropriate nonlinear optimization solver such as CONOPT (Drud, 1994).11 Observe

that we just need to keep the solution at time s, ais, for use in the next step. In step 3

of Algorithm 1 we use the optimal decision ais to generate the next-period state, Si
s+1 =

Gt(Si
s,a

i
s, ✏

i
s), given realization of shocks, ✏is. Once we reach the state Si

s+1 at time s + 1,

we come back to implement step 2 and then step 3. In other words, Algorithm 1 uses

an adaptive management way: decisions are made for the current period in the face of

the future uncertain shocks; once the next-period shock is observed, decisions for the next

period are made with re-optimization given the observed shock and new state variables at

the next period. Observe that the serial correlation of random variables has been captured

in their associated transition laws. Repeating this process iteratively through T times,

9As ✏t is a serially uncorrelated stochastic process, we can replace ✏t by its zero mean in the functions
of Ft and Gt in (2) if all transition laws are continuous. For problems with a discrete Markov chain in
transition laws, we can use the same technique as described in Cai et al. (2017) for NLCEQ with a discrete
stochastic state to obtain the corresponding deterministic model (1). That is, given realization of the Markov
chain at time s, we can compute expectations of the Markov chain at all times after s conditional on the
value at time s and then replace the stochastic process by the path of the conditional expectations in step
2 of Algorithm 1.

10If the utility Ut is a common power function with a relative risk aversion parameter �, then the role of
the risk aversion disappears in the certainty equivalent approximation model (2). As � is also the inverse
of the intertemporal elasticity of substitution (IES) for time-separable power utilities, the IES, 1/�, still
a↵ects the solution to the deterministic model (2). For this reason, the NLCEQ and the ENLCEQ methods
cannot work for dynamic portfolio problems, where the risk aversion is important for risky portfolio choices,
dynamic stochastic problems with Epstein–Zin preferences (e.g., Cai and Lontzek (2019)) in which the risk
aversion and the IES are separated, or static problems, where � has only the risk aversion role. For the
stochastic land use problem in the next section and the optimal growth model in the appendix, we use
time-separable utilities, so the ENLCEQ is an appropriate method. As we cannot a priori determine the
implications of certainty equivalence assumption on the solution accuracy, we should always check the errors
of solutions of ENLCEQ. As we show below, for examples analyzed in this study, the solution errors are
minimal.

11See Cai (2019) for discussion on the optimal control method.
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we compute a representative simulated pathway of optimal decisions, {ais}Ts=0, and states,

{Si
s}Ts=0, which corresponds to the realized path of shocks, {✏is}Ts=0. Repeating over i, we

compute m simulated paths of optimal states and decisions, (St,at), from time 0 to T , and

then obtain their distributions. This simulation process can be naturally parallelized.12

For an illustration of the method’s accuracy, in the appendix, we solve a simple optimal

growth problem with stochastic discrete total factor productivity (TFP),13 represented as

a Markov chain. TFP and capital are state variables (where TFP is discrete, and capital

is continuous), and consumption is a continuous decision variable. Using ENLCEQ, we

generate 1,000 simulated solution paths of capital, productivity, and optimal consumption

over the first 20 periods. That is, at each realized state of productivity and capital, Si
s,

we have its corresponding optimal consumption, ais, for i = 1, ..., 1000 and s = 0, ..., 19.

We also solve the same growth problem using value function iteration (VFI) with a high-

degree Chebyshev polynomial approximation on the value function and obtain the optimal

consumption policy (approximated by a high-degree Chebyshev polynomial for each discrete

value of productivity). We compare the ENLCEQ solution of consumption, ais, and the

values of the VFI optimal consumption policy at the corresponding ENLCEQ state, Si
s, for

each i = 1, ..., 1000 and s = 0, ..., 19.14 We find that the L1 relative error (i.e., the average

of absolute relative errors across i = 1, ..., 1000 and s = 0, ..., 19) of the ENLCEQ solution

is 3.7 ⇥ 10�3, and the L1 relative error (i.e., the maximum of absolute relative errors) is

5.5⇥ 10�3.15 This shows that ENLCEQ can solve a dynamic stochastic problem with 2 to

3 digit accuracy, which is similar to the approximation errors of Cai et al. (2017). We also

check the normalized Euler errors for our dynamic stochastic land use problem below and

find that the L1 error of solutions for the first 100 years (the periods of interest) among

1,000 simulated paths is only 8.6 ⇥ 10�4, and the corresponding L1 error is only 0.02.16

This is within range of acceptable accuracy for the most dynamic stochastic natural resource

problems.

Compared to the original NLCEQ method, the ENLCEQ method can solve nonstation-

12The numerical solution approach may resemble a well-known Monte Carlo procedure, but there are
important di↵erences. Unlike the Monte Carlo procedure, for a given initial-time state, ENLCEQ only
needs to solve for one case of (2) with s = 0 to obtain an initial-time solution, whereas the Monte Carlo
method needs to solve thousands of same-size cases, whereby each case corresponds to one simulated path of
shocks. The ENLCEQ method solves (2) period by period to obtain solutions for the next periods. That is,
the decision-maker learns realized shocks in the previous periods, forms certainty equivalent approximation
over future shocks conditional on the current-period state, and then finds the solution at the current period.
The Monte Carlo method does not have this learning and adaptive property. Both ENLCEQ and Monte
Carlo methods ignore the risk aversion and are thus unable to solve dynamic portfolio problems or dynamic
stochastic problems with Epstein–Zin preferences. See Cai (2019) for more discussion on the Monte Carlo
and certainty-equivalence methods.

13We choose this model because it is a standard benchmark for testing novel computational methods, see,
e.g., Den Haan et al. (2011).

14Note that we may also use Chebyshev polynomials to approximate the ENLCEQ solution of consump-
tion with the data

��
Si
s,a

i
s

�
: i = 1, ..., 1000; s = 0, ..., 19

 
, and then compare these Chebyshev polynomials

with the VFI optimal consumption policy. But this will introduce policy function approximation errors to
ENLCEQ. Moreover, decision-makers are more interested in estimating errors on policies at the realized
states instead of the whole state space, particularly for non-stationary problems with time-varying policy
functions. Furthermore, for problems with high-dimensional state spaces, 1,000 simulated paths are often
not enough to obtain a good approximation to its policy function. Therefore, we compare the ENLCEQ
solution, ai

s, directly with the values of the VFI optimal consumption policy at the corresponding ENLCEQ
state, Si

s.
15We view the VFI optimal consumption policy to be the “true” solution as there is no analytical solution

for the optimal growth problem.
16For more details of the error checking, please refer to the appendix.
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ary problems which the NLCEQ method cannot unless it is applied at every period t. Even

for stationary problems, ENLCEQ does not require explicit approximation of the optimal

decision rules so it may be more suitable for implementation of high-dimensional problems

that require sparse grid approximation and are di�cult to code. Moreover, ENLCEQ is

more e�cient than the original NLCEQ method, if the number of simulations, m, is less

than the number of approximation nodes used in the original NLCEQ method. For exam-

ple, for the dynamic stochastic model of global land use in this study, it has 15 continuous

state variables and 2 discrete state variables (totally 5 ⇥ 3 = 15 discrete states). If we use

only 5 nodes per continuous state variable to get degree-4 complete Chebyshev polynomial

approximation, NLCEQ needs to solve 515⇥15 ⇡ 4.6⇥1011 optimization problems at every

period t. Even if we use only 3 nodes per continuous state variable to get a quadratic poly-

nomial approximation, NLCEQ needs to solve 315 ⇥ 15 ⇡ 2.2 ⇥ 108 optimization problems

at every period t. The ENLCEQ method only needs to solve m optimization problems at

every period t. Typically we can choose m = 1, 000, so it is about 22,000 times faster than

NLCEQ with quadratic polynomial approximation, or 4.6⇥ 108 times faster than NLCEQ

with degree-4 polynomial approximation. Furthermore, because the ENLCEQ method does

not use an explicit approximation to continuous value / policy functions, there are no func-

tional approximation errors, and solutions from ENLCEQ may be more accurate than those

from the original functional approximation-based NLCEQ method.

3 Stochastic FABLE model

This section presents a modeling framework for analyzing nonlinear dynamic stochastic

models of natural resource use with multiple sectors, in which preferences, production tech-

nology, resource endowments, and other exogenous state variables evolve stochastically over

time according to a Markov process with time-varying transition probabilities.17

Specifically, we develop a stochastic version of a global land use model nicknamed FABLE

(Forest, Agriculture, and Biofuels in a Land use model with Environmental services), a

dynamic multi-sectoral model for the world’s land resources over the next century (Steinbuks

and Hertel, 2012, 2016). This model brings together recent strands of agronomic, economic,

and biophysical literature into a single, intertemporally consistent, analytical framework,

at the global scale. FABLE is a discrete dynamic partial equilibrium model, where the

population, labor, physical and human capital, and other variable inputs are assumed to

be exogenous. Total factor productivity and technological progress in non-land intensive

sectors are also predetermined. The model focuses on the optimal allocation of scarce land

across competing uses across time and solves for the dynamic paths of alternative land uses,

which together maximize global economic welfare.

The FABLE model accommodates a complex dynamic interplay between di↵erent types

of global land use, whereby the societal objective function places value on processed crops

and livestock, energy services, timber products, ecosystem services, and other non-land

goods and services (Figure 1). There are three accessible primary resources in this partial

17 The constructed model belongs to the class of stochastic growth models with multiple sectors studied

in Brock and Majumdar (1978), Majumdar and Radner (1983), and Stokey et al. (1989) among others.
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arrows. Stochastic model terms incorporating random processes, ✏t, are shown as dashed shapes or
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equilibrium model of the global economy: land, liquid fossil fuels, and other primary inputs,

e.g., labor and capital (see the bottom part of Figure 1). The supply of land is fixed and

faces competing uses that are determined endogenously by the model. They include un-

managed forest lands - which are in an undisturbed state (e.g., parts of the Amazon tropical

rainforest ecosystem), agricultural (or crop) land, pasture land, and commercially managed

forest land.18 As trees of di↵erent age have di↵erent timber yields and di↵erent propensities

to sequester carbon, the model keeps track of various tree vintages in managed forests,19

which introduces additional numerical complexity for solving the model. The flow of liquid

fossil fuels evolves endogenously along an optimal extraction path, allowing for exogenously

specified new discoveries of fossil fuel reserves. Other primary inputs include variable in-

puts, such as labor, capital (both physical and human), and intermediate materials. The

endowment of other primary inputs is exogenous and evolves along a pre-specified global

economic growth path.

There are six intermediate inputs used in the production of land-based goods and ser-

vices in FABLE: petroleum products, fertilizers, crops, liquid biofuels,20 live animals, and

raw timber (see the middle part of Figure 1). Fossil fuels are refined and converted to either

petroleum products, that are further combusted, or to fertilizers, that are used to boost

yields in the agricultural sector. Cropland and fertilizers are combined to grow crops, that

can be further converted into processed food and biofuels, or used as an animal feed. Specif-

ically, we assume that agricultural land LA,c
t and fertilizers xn,c

t are imperfect substitutes

in production of food crops, xc
t , with specific production technology given by the following

constant elasticity of substitution (CES) function:

xc
t = ✓ct

⇣
↵n

⇣
LA,c
t

⌘⇢n

+ (1� ↵n) (xn,c
t )

⇢n

⌘ 1
⇢n

, (3)

where ✓ct is stochastic crop technology index, and ↵n and ⇢n are, respectively, the input share

and substitution parameters. Equation (3) captures three key responses within the model

to changes in crop technology index: (i) demand response (change in consumption of food

crops), (ii) adaptation on the extensive margin (substitution of agricultural land for other

land resources), and (iii) adaptation on the intensive margin (substitution of agricultural

land for fertilizers).

The biofuels substitute imperfectly for liquid fossil fuels in final energy demand. The

food crops used as animal feed and pasture land are combined to produce raw livestock.

Harvesting managed forests yield raw timber, that is further used in timber processing.

The land-based consumption goods and services take the form of processed crops, live-

stock, and timber, and are, respectively, outcomes of food crops, raw livestock and timber

18We ignore other land use types, such as savannah, grasslands, and shrublands, which are largely unman-
aged and often of limited productivity. This makes them di�cult to incorporate into an economic model of
land use. Consequently, they are typically left out of most contemporary analyses of global land use change
(Hertel et al., 2009). We also ignore residential, retail, and industrial uses of land in this partial equilibrium
model of agriculture and forestry.

19We do not keep track of vintages for natural lands and assume they are primarily old grown forest.
20In FABLE, bioenergy does not include the potential use of biomass in power generation. This limitation

is acknowledged in Steinbuks and Hertel (2016, p. 566): “A more serious limitation to this study is our
omission of the potential demand for biomass in power generation. Under some scenarios, authors have
shown this to be an important source of feedstock demand by mid-century (Rose et al. 2012). However,
absent a full representation of the electric power sector, our framework is ill-suited to addressing this issue.”
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processing. The production of energy services combines non-land energy inputs (i.e., liquid

fossil fuels) with the biofuels, and the resulting mix is further combusted. Finally, all land

types have the potential to contribute to other ecosystem services, a public good to society,

which includes recreation, biodiversity, and other environmental goods and services.21 To

close the demand system, we also include other non-land goods and services (e.g., manu-

facturing goods and retail, construction, financial, and information services), which involve

’consumption’ of other primary inputs not spent on the production of land-based goods and

services. As the model focuses on the representative agent’s behavior, the final consumption

products are all expressed in per-capita terms.

To preserve space, a complete description of model equations, variables, and parameter

values is presented in the online appendix.

4 Modeling Crop Yield Uncertainty

This section characterizes uncertainty in future agricultural yields over the coming century,

which is one of the core uncertainties shown to a↵ect land use in the long run (Steinbuks

and Hertel, 2013). Crop yields are subject to two types of uncertainties: those related to

the development and dissemination of new technologies, and those related to changes in the

climatic conditions under which the crops are grown. The former type of uncertainty has

until recently dominated the pattern of the evolution of the global crop yields, whereas the

latter is becoming an increasingly important factor (Lobell and Field, 2007; IPCC, 2014a).

While it is plausible to hypothesize that accelerating climate impacts may, in turn, induce

further technological advances in an e↵ort to facilitate adaptation to climate change, this

hypothesis is not supported by limited empirical evidence.22 Therefore, in this paper, these

two sources of uncertainty are treated separately, although they are both characterized by

the use of combined climate and crop simulation models run over a global grid.

We characterize future uncertainty in yields by constructing a stochastic crop productiv-

ity index, ✓ct , which captures the evolution of future crop yields under di↵erent realizations

of uncertainty in crop productivity based on the most recent projections in the agronomic

and environmental science studies. An important characteristic of staple grains yields is

that they tend to grow linearly, adding a constant amount of gain (e.g., ton/ha) each year

(Grassini et al., 2013). This suggests that the proportional growth rate should fall gradu-

ally over time. However, crop physiology dictates certain biophysical limits to the rate at

which sunlight and soil nutrients can be converted to the grain. And there is some recent

agronomic evidence (Cassman et al., 2010; Grassini et al., 2013) showing that yields appear

to be reaching a plateau in some of the world’s most important cereal-producing countries.

Cassman (1999) suggests that average national yields can be expected to plateau when they

21It is well established in the environmental science literature that managed lands have positive envi-
ronmental externalities. For example, managed forests provide timber, but also help to retain soils and
moisture, as well as creating microclimates. Crop and pastures provide food, but also facilitate pollination,
wild animal feed, and biological control of prey species and reduction of herbivory by top predators (Kumar,
2010). As FABLE aims to find the socially optimal path of global land use, it does account, albeit in a
stylized way, for these complex contributions of the world’s land resources to human welfare.

22For example, in a recent study of climate change adaptation in the United States, arguably one of the
most technologically developed countries, Burke and Emerick (2016) conclude that “longer-run adaptations
appear to have mitigated less than half—and more likely none—of the large negative short-run impacts of
extreme heat on productivity.”
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reach 70–80% of the genetic yield potential ceiling. Based on these observations from the

agronomic literature, we specify the following logistic function determining the evolution of

the crop productivity index over time:

✓ct =
✓cT ✓

c
0e

ct

✓cT + ✓c0 (e
ct � 1)

, (4)

where ✓c0 is the value of the crop productivity index in period 0, which we calibrate to match

observed weighted yields in key staple crops (corn, rice, soybeans, and wheat), ✓cT is the crop

yield potential in the end of the current century, that is, “the yield an adapted crop cultivar

can achieve when crop management alleviates all abiotic and biotic stresses through optimal

crop and soil management” (Evans and Fischer, 1999), and c is the logistic convergence

rate to achieving potential crop yields.

Though the initial value of the crop productivity index is known with certainty, potential

crop yields are highly uncertain. We assume that potential crop yields are a↵ected by

a two-dimensional stochastic process of climate and technological shocks, J1,t, and J2,t,

respectively. For the technological shock, J2,t, we assume that there are three states of

technology: “bad” (indexed by J2,t = 1), “medium” (indexed by J2,t = 2), and “good”

(indexed by J2,t = 3). In the optimistic (i.e., “good”) state of advances in crop technology,

we assume that yields continue to grow linearly throughout the coming century, eliminating

the yield gap by 2100. In the “medium” state of technology, rather than closing the yield

gap by 2100, average yields in 2100 are just three-quarters of yield potential at that point

in time. In the “bad” state of technology, there is no technological progress, and the crop

yields stay the same as at the beginning of the coming century.

For the climate shock, J1,t, we assume it is a Markov chain with five possible states at

each time t. To construct these states, we use the results of Rosenzweig et al. (2014), who

conducted a globally consistent, protocol-based, multi-model climate change assessment for

major crops with the explicit characterization of uncertainty.23 Based on this assessment,

we construct five states that correspond to quintiles of the distribution of di↵erent outcomes

of four global crop simulation models and five global climate models, with and without CO2

fertilization e↵ects for potential crop yields by 2100. Under two optimistic states of the

world, we observe a 2 and 15 percent increases in potential crop yields relative to model

baseline, respectively, whereby significant CO2 fertilization e↵ects o↵set the negative e↵ects

of climate change. For the next two states, we see a 15 and 19 percent declines in potential

crop yields relative to model baseline whereby CO2 fertilization e↵ects are assumed to be

either small or non-existent, and the negative e↵ects of climate change tend to prevail.

Finally, under the most pessimistic state of the world, drastic adverse e↵ects of climate

change combined with the absence of any CO2 fertilization e↵ects result in a 36 percent

decline in potential crop yields relative to model baseline.

Further details of constructing climate and technological states can be found in the

23 Given the partial equilibrium nature of FABLE, we cannot directly capture all sources of GHG emissions

and, therefore, endogenize their e↵ect on global land use. However, as global land use emissions account

for less than a quarter of global GHG emissions (IPCC, 2014b), climate-induced changes in land use will be

relatively small to have a major e↵ect on global temperatures.
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Appendix.

The path of technological change in crop yields evolves by reversible transitions across

these states. The stochastic path of the crop productivity index is then given by

At =
AT (J1,t, J2,t)A0ect

AT (J1,t, J2,t) +A0 (ect � 1)
(5)

where AT (i, j) represents the crop productivity index at the terminal time T at the state

J1,t = i and J2,t = j, for i = 1, 2, ..., 5 and j = 1, 2, 3.24 Thus, At is a Markov chain,

which takes one of 15 possible time-varying values at each time period. This can be seen

as a discretization of a mean-reverting process with continuous values and time trend, but

a finer Markov chain with more values can only marginally change our solution. AsAt is

completely dependent on J1,t and J2,t, it is not a state variable, whereas J1,t and J2,t are both

state variables. Having characterized the realizations of crop productivity under alternative

states of the agricultural technology and climate change impacts, we still need to calibrate

transition probabilities for the climate and technology shocks to construct the stochastic

crop productivity index. As regards climate shock, the environmental and climate science

literature acknowledges some degree of persistence but does not provide much guidance

on the transition dynamics between alternative climate states a↵ecting crop yields. In the

absence of reliable estimates, for constructing the transition probability matrix of J1,t we

assume simple transition dynamics, where each state has a 50 percent probability of retaining

itself next period and a 25 percent probability of moving upwards or downwards to an

adjacent state. As regards the technology shock, since we do not have the historical data for

evolution of agricultural technology, we assume that technological advances in agriculture

follow a similar trend to advances in the rest of the economy, and use the probability

transition matrix of J2,t estimated by Tsionas and Kumbhakar (2004) for a comprehensive

panel of 59 countries over the period of 1965–1990. These estimates correspond to a 20

percent probability of the “bad” technological state, 56 percent of the “medium” state, and

24 percent of the “good” state. The transition probability matrices of J1,t and J2,t are

shown in the Appendix.

Figure 2 shows the deterministic-baseline path (the solid line) used in the perfect foresight

model and the range of the stochastic crop productivity index based on 1,000 simulation

paths over the entire 21st century, with additional summary statistics presented in Appendix.

The simulations start at the “medium” states of climate and technology in the initial year.

The deterministic-baseline path is calculated by taking expectations of the stochastic crop

productivity index conditional on the initial “medium” states (equation 5). It also takes

the same values as the median path (the “o” line) of simulations, whereby the climate and

technological states are kept at “medium”, while the average line (the “+” line) deviates

a bit after the year 2070. At every time t, there are 1,000 realized values of At among

which there are only 15 di↵erent values. The 10% and 90% quantile lines (the dashed and

dash-dotted lines) represent the 10% and 90% quantiles of these 1,000 simulated values of

24It is straghtforward to demonstrate that limt!0


AT (J1,t,J2,t)A0e

ct

AT (J1,t,J2,t)+A0(ect�1)

�
= A0 and

limt!1


AT (J1,t,J2,t)A0e

ct

AT (J1,t,J2,t)+A0(ect�1)

�
= AT .
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Figure 2: Crop Productivity Index

At at time t, so they are not realized sample paths, but Figure 2 also displays one realized

sample path of At which is the dotted line.

5 Model Results

This section describes the results of the impact of crop yield uncertainty on the optimal

path of global land use based on the dynamic stochastic model simulations. While it is

unlikely that the world’s land will be optimally allocated in the coming century, knowledge

of this path can provide important insights into how uncertainty and irreversibility shape the

desired path for global land use decisions. We solve the model over the 400 years with 5-year

time steps and present the results for the first 100 years to minimize the e↵ect of terminal

period conditions on our analysis.25 We first present the results of the perfect foresight

model, wherein the optimal land allocation decisions are made based on the values of the

crop productivity index in the absence of climate and technology shocks. This deterministic

analysis is a useful reference point for further discussion when the uncertainty in food crop

yields is introduced. We then present the results of the dynamic stochastic model, where

the impact of the intrinsic climate and technology uncertainty is brought into the model

optimization stage. Specifically, we generate 1,000 sample paths of optimal global land

use under di↵erent realizations of the stochastic crop productivity index. The results are

presented as the di↵erence between the stochastic path and deterministic reference solution.

5.1 Optimal Path of Global Land Use under Crop Yield Uncer-

tainty

Figure 3 depicts the optimal allocation of global land use over the next century. The

left-hand side of Figure 3 shows the deterministic paths of di↵erent types of land considered

25The model converges to its stationary state around 2150. The di↵erences in land use allocations between
2100 and 2150 are small and therefore not reported.
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in this study, i.e., when the food crop yields are perfectly anticipated. Specifically, it shows

three scenarios, where the value of the crop technology index corresponds to (i) expected val-

ues of the stochastic crop productivity index (deterministic-baseline scenario), (ii) the most

pessimistic climate and bad technology states (deterministic-pessimistic scenario), and (iii)

the most optimistic climate and good technology states (deterministic-optimistic scenario).

The right-hand side of Figure 3 shows the di↵erence range between the 1,000 simulation

paths based on di↵erent ex-ante realizations of the stochastic crop productivity index and

the deterministic-baseline path. The 10%, 50% and 90% quantile lines represent 10%, 50%

and 90% quantiles of 1,000 simulated values respectively at each time, and the average line

(the “+” line) represent the average of 1,000 simulated values respectively at each time.

The right-hand side of Figure 3 also shows two extreme cases of optimal land-use paths

conditional on period t realizations of crop productivity index states At(J1,t, J2,t). The

realized crop productivity index always takes the highest possible value in a stochastic-

optimistic case (the line of squares), and the lowest possible value in a stochastic-pessimistic

case (the line of marks). As future realizations of the stochastic crop productivity index

are uncertain, these extreme stochastic solutions are not the same as the corresponding

deterministic solutions, where the values of future crop productivity index are known with

certainty. In the stochastic-optimistic case, for example, potentially lower realizations of

future crop productivity index result in larger current-period agricultural land allocation

as compared to the deterministic-optimistic solution. For other model variables, due to

resource limits (e.g., the total land area is unchanged over time) and other constraints, the

impact of uncertainty is theoretically di�cult to assess.

We start with the left-hand side of panels (a)-(e) of Figure 3 that shows the optimal

land use paths under the perfect foresight. Beginning with the description of the baseline

scenario we see that, in the first half of the coming century, the area dedicated to food crops

increases by 350 million hectares or 22 percent compared to 2004, reaching its maximum of

1.88 billion hectares around mid-century (panel a). Continuing population growth, intensi-

fication of livestock production, and increasing demand for food, stemming from economic

growth are the key drivers for this cropland expansion. In the second half of the coming

century, slower population growth, and technology improvements in crop yields and food

processing result in a smaller demand for cropland. By 2100 cropland area declines signifi-

cantly relative to its peak value, falling to 1.45 billion hectares, which is, 6 percent smaller

than in 2004. In the first half of the coming century land allocation for the second-generation

biofuels is close to zero (panel b). Consistent with the recent analysis of 2G biofuels’ deploy-

ment potential (National Research Council, 2011), absent aggressive GHG regulations and

biofuels’ policies, this technology is suboptimal because of low extraction and refining costs

of fossil fuels and high production and deployment costs of the second-generation biofuels.

In the second half of the coming century, the second-generation technology becomes viable,

as fossil fuels become scarce and costs of producing the second-generation biofuels decline.

This results in greater land requirements for the second-generation biofuels crops. By the

end of the coming century, agricultural land dedicated to the second-generation biofuels

crops adds 500 million hectares. Consistent with recent trends, global pasture area declines

throughout the entire century (panel c), reflecting increased substitution of pasture land for
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Figure 3: Optimal Global Land Use Paths
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animal feed in livestock production (Taheripour et al., 2013). Managed forest area increases

throughout the entire century reaching 1.95 billion Ha by 2100 (panel d). In contrast, in

response to greater requirements for agricultural land, unmanaged forest area declines by

about 500 million Ha over the course of the 21st century (panel e). The decline in unman-

aged forest land is less environmentally damaging in the second half of the coming century,

as deforestation is limited, with most of the unmanaged forests being converted to managed

or protected forest land. Finally, protected forest area more than doubles by the end of the

coming century, in light of strong growth in the demand for ecosystem services (panel f).

The other two scenarios exhibit broadly similar dynamics. As expected, compared to the

baseline scenario, the most pessimistic scenario foresees a greater expansion of agricultural

land for food crops and reduction in other types of land (except for protected lands) in re-

sponse to expected lower realizations of the crop technology index. The situation is reversed

for the optimistic scenario. There is a significant variation in the range of anticipated ex-

pansion of the agricultural area for food crops between optimistic and pessimistic scenarios,

which amounts to 200 million hectares or 14 percent of total cropland in 2100. Variation

in expected land use change for other types of land accounts for an approximately equal

proportion of the variation in agricultural land for food crops, whereas protected forest areas

change very little across di↵erent climate scenarios.

Uncertainty in the crop productivity index results in additional redistribution of land

resources so to o↵set the impact of potentially lower yields. As social preferences exhibit

intertemporal substitution in this stochastic application of the FABLE model, some of that

redistribution takes place even in the absence of the actual changes in the states of climate

or technology.26 Compared to the deterministic scenario, the median (i.e., the 50 percent

quantile) path of global land use that correspond to the “medium” state of climate (J1,t = 3)

and the “medium” technological state (J2,t = 2) foresees a smaller use of agricultural land

for food crops (panel a), and greater use of agricultural land for 2G, biofuels’ crops (panel

b), pasture land (panel c), managed forest land (panel d). There is also a decline in the

protected land area (panel e) and an increase in unmanaged natural land (panel d). Unlike

the deterministic scenario, almost all of the variation in global land resources in stochastic

simulations happens across agricultural land for food crops and 2G biofuels crops (panels

a and b). For all other land resources, the di↵erences between stochastic and deterministic

paths are small and economically insignificant. This is because land conversion costs of

agricultural land for other types of land become larger in the presence of uncertainty. These

other types of land have higher adjustment costs of conversion associated with additional

time cost of regrowing lumber and livestock, and irreversibilities in accessing protected land

areas. Land rotation between food crops and 2G biofuels crops is less costly in the FABLE

model. This result is consistent with earlier studies that find that closer integration with the

energy sector o↵ers greater potential for food-energy substitution, and thus also a greater

resilience against adverse climate conditions a↵ecting food crop yields (Di↵enbaugh et al.,

2012; Verma et al., 2014).

While the direction of the e↵ect of the uncertainty in the crop productivity on land

26 This result is similar to the theoretical findings and numerical simulations of Lanz et al. (2017).

19



conversion can be inferred from the economic theory of environmental and natural resource

management under uncertainty (see, e.g., Tsur and Zemel (2014) and references therein), the

extent to which this uncertainty propagates into land conversion depends critically on chosen

model structure and parameters. For example, Alexander et al. (2017, p.1) find that even in

the absence of intrinsic uncertainty “systematic di↵erences in land cover areas are associated

with the characteristics modeling approach are at least as great as the di↵erences attributed

to scenario variations”. Depending on the assumptions on the substitution of land for other

resources, the size of technological progress, and the responsiveness of demand for land-based

goods and services to changes in the crop productivity, this magnitude can be substantially

di↵erent for other land use models. However, for the same model parameters, we can

see that the range of land conversion is considerably smaller for the dynamic stochastic

model as compared to the deterministic scenario analysis. As we see from Figure 3, panel

(a), the di↵erence between the most extreme paths of the stochastic crop productivity

index is about 170 million hectares at 2100 or about 12 percent of the total agricultural

area dedicated to food crops. About half of that variation can be attributed to the most

extreme (i.e., falling beyond 10th and above 90th percent quantiles) realizations of crop

productivity. This is because the stochastic model assumes that climate and technological

states a↵ecting crop yields are reversible (that is, if the current state is “bad” (or “good”),

it could be “good” (or “bad”) in future). In comparison with the deterministic model under

the pessimistic (or optimistic) scenario, the social optimum in the stochastic model requires

smaller (or greater) conversion of other types of land to cropland. Thus, agricultural land

area in the deterministic pessimistic (or optimistic) scenario is larger (or smaller) than the

largest (or the smallest) path in the stochastic simulations. For example, in 2100, under the

deterministic-pessimistic scenario, the cropland deviation from the deterministic-baseline

scenario is about 100 million hectares, which is 25 percent larger than the largest deviation

under the stochastic simulations, and about twice as large than the deviation above the 90%

quantile of the stochastic crop technology index. This result demonstrates that scenario

analysis can significantly overstate the magnitude of expected agricultural land conversion

under uncertain crop yields.

5.2 Optimal Path of Land-Based Goods and Services under Crop

Yield Uncertainty

The left-hand side panels of Figure 4 report the optimal paths of land-based goods and

services under the deterministic model scenarios. Beginning with the baseline scenario, the

first panel of Figure 4 shows the production path of food crops, which increases steadily in

the first half of the coming century. Compared to 2004, production of food crops (including

livestock and biofuels feedstock) nearly doubles, reaching its maximum of about 11 billion

tons around 2050. As with cropland expansion, rapid population growth and rising incomes

are the key drivers for growing consumption on the demand side. On the supply side, the

increase in the production of food crops is further boosted by growing crop yields. At the

end of the coming century, production of food crops moderates, as consumers satiate their

food requirements and the technology of food marketing and processing improves. By 2100

crop production for the livestock feed has leveled o↵ and even begins to decline. There is also
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a significant variation in the range of production of food crops between the most optimistic

and pessimistic scenarios, which amounts to the sizable amount of 5.3 billion tons.

The results of the dynamic stochastic model simulations also show that uncertainty

in the crop productivity index has a profound e↵ect on the optimal production path of

food crops. Between the most extreme paths of the stochastic crop productivity index,

production of food crops varies by about 5.4 billion tons compared to the corresponding

deterministic path of the stochastic crop productivity index. This is a sizable change, which

suggests a significant variation in levels of consumption in 2100 along di↵erent paths of

stochastic crop productivity index. In the FABLE model, much of the variation in the

optimal path of food crops come on the demand side, with the crop productivity decline

resulting primarily in the reduced consumption of processed crops and livestock. As shown

above, the uncertainty-induced supply response is relatively small along the extensive margin

in the dynamic stochastic model (i.e., land conversion). In the online appendix (Figure C.1,

panel a) we show that the supply response on the intensive margin is smaller, with the ratio

of fertilizers to cropland increasing by less than 6 kg/Ha (or eight percent) under extreme

realizations of climate and technology uncertainties. About a half of that di↵erence, however,

corresponds to the most extreme (i.e., falling beyond 10th and above 90th percent quantiles)

realizations of crop productivity. This result indicates that extreme uncertainty in crop

productivity could have a significant impact on food consumption over the coming century.

Production of both first- and second- generation biofuels in the deterministic model

grows as oil becomes scarcer along the baseline path and agricultural yields increase (panels

b and c). Along that optimal path, characterized by the absence of climate and renewables

policies and the abundance of cheap fossil fuels in the first part of the coming century, first-

generation biofuels never become a large source of energy consumption. In 2100 production

of first- generation biofuels is a mere 20 million tonnes of oil equivalent (Mtoe) in the

baseline scenario, and 40 Mtoe in the optimistic scenario. These numbers are considerably

higher compared to 2004 but are still small in relative terms (less than one percent of

total liquid fuel consumption: see technical appendix, Figure C.1, panel b). In contrast,

the production of second-generation biofuels takes o↵ sharply and expands rapidly after

2040 as they become cost-competitive relative to increasingly costly fossil fuels. In 2100

production of second-generation biofuels reaches 1.55 billion tonnes of oil equivalent (Btoe)

in the baseline scenario. Uncertainty in food crop yields has important implications for the

production of the first-generation biofuels that are directly a↵ected by both climate and

technology states of food crop yields. The di↵erence between the best and worst states of

the crop productivity index is about 31 million tons of oil equivalent, which exceeds their

expected baseline production in 2100. Although climate and technology states of food crop

yields do not directly a↵ect yields of the second- generation biofuels crops, production of

second-generation biofuels is nonetheless a↵ected through indirect substitution e↵ects of

food for energy in FABLE demand system. There is a sizable variation in the production of

second-generation biofuels between extreme paths of the stochastic crop productivity index,

which accounts for 450 Mtoe, or about 30 percent of their total production in 2100.

Production of livestock in the deterministic model increases throughout the coming cen-

tury (panel d) reflecting shifting diets and the growing demand for processed meat as popula-
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tion income increases (Foley et al., 2011). By the end of the coming century, the production

of livestock in the baseline scenario increases by about 1.5 times compared to 2004, reaching

1.28 billion tons. Given the important contribution of the livestock feed in the production

of livestock, we can see its production is smaller in the pessimistic scenario and larger in the

optimistic scenario. The di↵erence in livestock production between the optimistic and pes-

simistic scenarios accounts for about 550 million tons. This range is similar to the dynamic

stochastic model. As the significance of animal feed in livestock production grows over time,

the e↵ect of uncertain crop yields becomes more pronounced. Similar to the result for food

crops, the most extreme paths of crop productivity account for about a third of all variation

in livestock production.

Production of timber in the deterministic model also expands with the growing demand

for timber products and further improvements in forest yields (panel e). By 2100, production

of merchantable timber crops reaches 3.2 billion tons in the deterministic baseline scenario,

which is twice as large as in 2004. The consumption of ecosystem services declines in the near

decades, as unmanaged natural forest lands are converted to croplands (panel f). It then

increases throughout the remaining part of the coming century as the demand for ecosystem

services increases, and more natural forest lands become institutionally protected. By 2100

consumption of ecosystem services is 36 percent larger than in 2004. Crop productivity has

a very small e↵ect on consumption paths of merchantable timber and ecosystem services

in either deterministic or stochastic models. This result is not very surprising as the crop

productivity does not directly a↵ect the production of either timber or ecosystem services,

whereas indirect land use change e↵ects are relatively small in this stochastic application of

the FABLE model.

6 Conclusions

This paper demonstrates how the uncertainties associated with nonstationary biophysi-

cal processes and technological change can be incorporated into an economic analysis of the

optimal allocation of natural resources in the long run. In doing so, it introduces a novel com-

putational method, ENLCEQ, for solving nonstationary dynamic high-dimensional stochas-

tic problems and applies it to FABLE, a recently developed multi-sectoral dynamic model

of global land use.

For illustrative purposes, the study focuses on uncertainty in future crop yields, one of

the core uncertainties a↵ecting the evolution of global land use in the long run. Combining

scenarios from global climate models and high-resolution output from spatial crop simulation

models for four major crops, it comes up with a plausible range of realizations of climate

shocks and their e↵ect on future crop yields. These estimates are supplemented with an

extensive survey of recent agro-economic and biophysical studies assessing the potential for

closing yield gaps as well as attaining further advances in potential yields through plant

breeding.

The paper’s key insight is to illustrate the magnitude of optimal land conversion deci-

sions in the context of di↵erent realizations of the stochastic crop productivity. Consistent

with the economic theory of natural resource management under uncertainty, the agricul-

tural productivity shocks, due either to adverse climate impacts or unexpected limits on
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further technological progress, result in additional conversion of scarceland resource to o↵-

set the impact of potentially lower yields. Owing to intertemporal substitution, some of

that conversion takes place even in the absence of actual realization of the climate shocks or

technology outcomes. This expansion is accompanied by the changes in the consumption of

processed food, livestock, and biofuels - the land-based products most a↵ected by changes

in crop productivity.

This study is primarily a methodological contribution, and the chosen model illustration

(FABLE) seeks to balance computational complexity and economic tractability. It thus

ignores many features standard in more advanced computational land and other resource

use models. The future research should focus on integrating economic decisions under

uncertainty into large dynamic natural resource models that feature spatial disaggregation at

the regional or zonal level, a more extensive representation of the energy sector, and di↵erent

types of resources and their production derivatives. Another promising research direction

would be to incorporate a more detailed representation of uncertain states backed by an

econometric analysis that recovers underlying distributions of uncertain natural resource

drivers over time.
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Technical Appendix

A.1 FABLE Model Description

This section and the following section describe key elements of FABLE model,

as well as its equations, variables, and model parameters. For a full descrip-

tion of the model, including details on model baseline calibration and extensive

sensitivity analysis, please refer to Hertel et al. (2016) and Steinbuks & Hertel

(2016) and technical appendices therein.

A.1.1 Primary Resources

Primary resources comprise of land, liquid fossil fuels, and other primary inputs,

e.g., labor and capital. The supply of land is fixed and faces competing uses that

are determined endogenously by the model. The flow of liquid fossil fuels evolves

endogenously along their optimal extraction path, accounting for exogenous

discoveries in new fossil fuel reserves. The endowment of other primary inputs

is exogenous and evolves along the prespecified global economy growth path.

A.1.1.1 Land

The total land endowment in the model, Ltotal, is fixed. Each period of time t

there are four profiles of land in the economy. They include unmanaged forest

land, LN , agricultural land, LA, pasture land, LP , and commercially managed

forest land, LC . The agricultural land area can be allocated for the cultiva-

tion of food crops (denoted LA,c), and second-generation biofuels feedstocks

(denoted LA,b2). We assume that the natural forest land consists of two types.

Institutionally protected land, LR, includes natural parks, biodiversity reserves

and other types of protected forests. This land is used to produce ecosystem

services for society, and cannot be converted to commercial land. Unmanaged

natural land, LN , can be accessed and either converted to managed land or to

protected natural land. Once the natural land is converted to managed land,

its potential to yield ecosystem services is diminished. This potential can be

partially restored for managed forests with significant land rehabilitation costs

incurred. The use of managed land can be shifted between cropland, forestland,

and pasture land (see Figure 1 in the main manuscript for a graphical represen-

tation of these transitions). We denote land transition flows from land type i
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to land type j as �i,j (a negative value means a transition from land type j to

land type i). Equations describing allocation of land across time and di↵erent

uses are as follows :

Ltotal =
X

i=A,P,C,N,R

Li
t (A.1)

LA = LA,c + LA,b2 (A.2)

LN
t+1 = LN

t ��N,A
t ��N,R

t +�C,N
t (A.3)

LA
t+1 = LA

t +�N,A
t ��A,P

t +�C,A
t (A.4)

LP
t+1 = LP

t +�A,P
t (A.5)

LR
t+1 = LR

t +�N,R
t (A.6)

Equations (A.1) and (A.2) define, respectively, the composition of total land and

agricultural land in the economy. Equations (A.3)-(A.5) describe the transitions

for unmanaged land, agricultural land, and pasture land.1 Equation (A.6) shows

the growth path of protected natural land.

Accessing the natural lands comes at a cost associated with building roads

and other infrastructure (Golub et al. , 2009). In addition, converting natural

land to reserved land entails additional costs associated with passing legislation

to create new natural parks. We denote the natural land access, rehabilitation,

and protection costs as CN,A,R, CC,N , and CN,R, respectively. There are also

costs of switching between the cropland and the pasture land, denoted as CA,P .

We assume that all these costs are continuous, monotonically increasing, and

strictly convex functions of converted land. There are no additional costs of

natural land conversion to commercial land, as the revenues from deforestation

o↵set these costs.

Managed forests are characterized by vmax vintages of tree species with vin-

tage ages v = 1, ..., vmax. At the end of period t each hectare of managed forest

1Equations (A.2) and (A.4) do not account for the transition from forestry to pasture
land. Throughout the past century tropical forests, particularly in the Latin America region,
have been extensively converted to the pasture land (Barbier et al. , 1994). However, in the
FABLE model, conversion of forest land to pasture is never optimal as cropland has higher
productivity for cattle breeding at the same conversion (stumpage) cost.
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land, LC
v,t, has an average density of tree vintage age v, with the initial alloca-

tion given and denoted by LC
v,0. The forest rotation ages and management are

endogenously determined. Each period the managed forest land can be either

planted, harvested, or left to mature. The newly planted trees occupy �C,C

hectares of land, and reach the average age of the first tree vintage next period.

The harvested area of tree vintage age v occupies �C,H
v hectares of forest land.

The di↵erence between the harvested area of all tree vintage ages and the newly

planted area is used for cropland, i.e.,

�C,A
t =

X

v

�C,H
v,t ��C,C

t

The following equations describe land use of managed forests:

LC
t =

vmaxX

v=1

LC
v,t, (A.7)

LC
v+1,t+1 = LC

v,t ��C,H
v,t , v < vmax � 1 (A.8)

LC
vmax,t+1 = LC

vmax,t ��C,H
vmax,t ��C,N

t + LC
vmax�1,t ��C,H

vmax�1,t (A.9)

LC
1,t+1 = �C,C

t . (A.10)

Equation (A.7) describes the composition of managed forest area across vin-

tages. Equation (A.8) illustrates the harvesting dynamics of forest areas with

the ages vmax � 1 and vmax. Equation (A.10) shows the transition from the

planted area to new forest vintage area.

The average harvesting and planting costs per hectare of new forest planted,

co,H , and co,C , are invariant to scale and are the same across all vintages. Har-

vesting managed forests and conversion of harvested forest land to agricultural

land is subject to additional near term adjustment costs, cH . The specific func-

tional forms of land conversion costs are shown in section C.1, equations (C.34)-

(C.39).

Thus, we have defined the vector of land state variables:

L =
�
LN , LA, LP , LR, LC

1 , ..., L
C
vmax

�

and its associated transition laws.
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A.1.1.2 Fossil Fuels

The initial stock of liquid fossil fuels, XF , is exogenous, and each period

of time t adds a new amount of fossil fuels, �F,D, which reflects exogenous

technological progress in fossil fuel exploration.2 The economy extracts fossil

fuels, which have two competing uses in our partial equilibrium model of land-

use. A part of extracted fossil fuels, �F,n
t , is converted to fertilizers that are

further used in the agricultural sector. The remaining amount of fossil fuels,

�F,E
t , is combusted to satisfy the demand for energy services. The following

equation describes supply of fossil fuels:

XF
t+1 = XF

t ��F,E
t ��F,n

t +�F,D
t . (A.11)

The cost of fossil fuels, cF , reflects the expenditures on fossil fuels’ extraction,

refining, transportation and distribution, as well the costs associated with emis-

sions control (e.g., Pigovian taxes) in the non-land-based economy. We assume

that the cost of fossil fuels is a nonlinear quadratic function with accelerating

costs as the stock of fossil fuels depletes (Nordhaus & Boyer, 2000):

cFt = ⇠F1

⇣
�F,E

t +�F,n
t

⌘2
 
XF

0 +�F,D
t

XF
t +�F,D

t

!
, (A.12)

where the parameter ⇠F1 captures the curvature of the liquid fossil fuel cost

function.

A.1.1.3 Other Primary Resources

The initial endowment of all other primary resources in the non-land-based

economy, such as labor, physical and human capital, and materials inputs, XO,

is exogenous in this model. We assume that the growth rate of all other primary

resources is a weighted average of the population growth, which reflects demo-

graphic changes, and the physical capital growth, o,X . The following equation

describes the supply of other primary inputs:

XO
t = XO

0


↵o,l ⇧t

⇧0
+
�
1� ↵o,l

� �
1 + o,X

�t
�
, (A.13)

where ⇧t is the economy’s population, and ↵o,l is the share of population growth

to the growth rate of all other primary resources. Other primary inputs can be

2This technological progress comprises of both discoveries on new exploitable oil and gas
fields, as well as development of new technologies for extraction of non-conventional fossil
fuels.
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used for the production of land-based goods and services or converted to final

goods and services in the non-land economy. Thus, state variables for resources

other than land are defined as:

X = (XF , XO).

As XO is exogenous and deterministic, it is a degenerated state variable and

not counted as a state variable for model solution purposes.3

A.1.2 Intermediate Inputs

We analyze six intermediate inputs used in the production of land-based

goods and services: petroleum products, fertilizers, crops, biofuels, and raw

timber. Fossil fuels are refined and converted to either petroleum products,

xp, that are further combusted, or to fertilizers, xn, that are used to boost

yields in the agricultural sector. Agricultural land and fertilizers are combined

to grow food crops, xc or 2G biofuels crops, xc,b2. Food crops can be further

converted into processed food and 1G biofuels, xb1, or used as an animal feed,

xc,l. 2G biofuels crops can only be converted into 2G biofuels, xb2. 1G biofuels

substitute imperfectly for liquid fossil fuels in final energy demand, whereas 2G

biofuels and liquid fossil fuels are the perfect substitutes The food crops used

as animal feed and pasture land are combined to produce raw livestock, xl.

Harvesting managed forests yield raw timber, xw, that is further used in timber

processing. The production functions for intermediate inputs can be illustrated

by the following equations

xj
t = gj

 
�F,{E,n}

t , L{A,P}
t ,

X

v

�C,H
v,t , xc,{l,b}

!
, j = p, n, c, b, l, w. (A.14)

where �F,{E,n}
t represents that either �F,E

t or �F,n
t is an argument of gj , sim-

ilarly for L{A,P}
t and xc,{l,b}. The specific functional forms of gj (·) are shown

in section C.1, equations (C.14)-(C.22).

A.1.3 Final Goods and Services

We consider five per capita land-based services that are consumed in the final

3 It would be, however, counted as a state variable for the model solution purposes if we

assume that the endowment is a stochastic process.
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demand: services from processed crops, yf , livestock, yl, energy, ye, timber,

yw, and ecosystem services, yr. Processed crops, livestock, and timber are

respectively products of food crops, raw livestock, and timber processing. The

production of energy services combines liquid fossil fuels with the biofuels, and

the resulting mix is further combusted. The ecosystem services are the public

good to society, which captures recreation, biodiversity, and other environmental

goods and services. To close the demand system, we also include other goods

and services, yo, which comprise of consumption of other primary inputs not

spent on the production of land-based goods and services.

We have defined all state variables for the deterministic model:

S := (L,X),

and the vector of decision variables is

at := (�N,A
t ,�N,R

t ,�C,N
t ,�A,P

t ,�C,A
t ,�C,H

1,t , ...,�C,H
vmax,t,�

C,C
t ,�F,E

t ,�F,n
t , LA,F

t , LA,B
t ,xt,yt),

where xt ⌘ [xp
t , x

n
t , x

c
t , x

b
t , x

l
t, x

w
t , x

c,l
t , xc,b

t ] and yt =
⇣
yft , y

l
t, y

e
t , y

w
t , y

r
t , y

o
t

⌘
.

The production functions for final per capita land-based goods and services

can be illustrated by the following equation:

yit = F i
t (St,at) , i = f, l, e, w, r. (A.15)

where some arguments in F i (·) could be redundant. It follows from equation

(A.15) that production of final goods and services involves the combination of

land resources and intermediate inputs. The specific functional forms of F i (·)
are shown in section C.1, equations (C.23)-(C.29), which are functions of L

and {xj}. All these equations constitute a part of the feasibility constraint

at 2 Dt(St).

The production of intermediate inputs or final land-based goods and services

i incurs costs, co,i, that are subtracted from available other primary resources.

The remaining amount of other primary resources is converted into other goods

and services, which are subsequently consumed in final demand. As the focus of

this model is on the utilization of land-based resources, we introduce the other

goods and services, yo, in a very simplified manner. We introduce no additional

cost of producing other goods and services, assuming that it is reflected in the

size of the endowment of other primary inputs. The specific functional form for

yo is shown in section C.1, equation (C.28).
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A.1.4 Preferences

The economy’s per-capita utility, u, is derived from the per capita consump-

tion of processed crops, livestock, timber, energy and ecosystem services, and

other goods and services. Following the macro economic literature, we assume

constant relative risk aversion utility,

u(y) =
C(y)1��

1� �
, (A.16)

where is the per capita consumption bundle of goods and services, C(y) is a

nonlinear aggregator over y, and � is the coe�cient of relative risk aversion,

which captures the economy’s attitude to uncertain events. We choose a non-

homothetic AIDADS preference (Rimmer & Powell, 1996) to compute C(y) im-

plicitly:

log (C(y)) =
X

q=f,l,e,w,r,o

✓
↵q + �qC(y)
1 + C(y)

◆
log
�
yq � yq

�
(A.17)

where ↵, �, and yq are positive parameters with
P

q ↵q =
P

q �q = 1. These

preferences place greater value on eco-system services, and smaller value on

additional consumption of food, energy and timber products as society becomes

wealthier. When � = 1, our utility function is equivalent to the AIDADS utility.

A.1.5 Welfare

We denote the transition laws of land, (A.3)-(A.6) and (A.8)-(A.10), as

Lt+1 = GL
t (St,at), (A.18)

and the transition laws for other resources, (A.11)-(A.13), as

Xt+1 = GX
t (St,at). (A.19)

Combining (A.18) and (A.19), we have

St+1 = Gt(St,at) (A.20)

for the deterministic model in the notations of Section 2.

The objective of the planner is to maximize the total expected welfare, which

is the cumulative expected utility of the population’s consumption of final goods

and services, y, discounted at the constant rate � > 0. The planner allocates
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managed agricultural, pasture and forest lands for crop, livestock, and timber

production, the scarce fossil fuels and protected natural forests to solve the

following problem:

max
a

1X

t=0

�tU(St,at) (A.21)

subject to the transition laws (A.20) and the feasibility constraints at 2 Dt(St)which

include (A.15), (C.23)-(C.29), (C.28), (A.17) and nonnegativity constraints for

the variables. Here

U(St,at) = u(yt)⇧t

is the utility function in the notations of Section 2.

B.1 Quantifying the Uncertainty in Crop Yields

B.1.1 Uncertainty in Agricultural Technology

Advances in crop technology are very di�cult to predict due to four intercon-

nected factors (Fischer et al. , 2011). First, there is significant uncertainty about

the potential for exploiting large and economically significant yield gaps (i.e., the

di↵erences between observed and potential crop yields) in developing countries,

especially those in Sub-Saharan Africa. A second and closely related point is

that it is unclear how fast available yield-enhancing technologies can be adopted

at a global scale.4 Third, there is a significant variation in developing countries’

institutions and policies that make markets work better and provide a conducive

environment for agricultural technology adoption.5 Finally, while plant breeders

continue to make steady gains in further advancing crop yields, progress depends

on the level of funding provided for agricultural research. This has proven to

be somewhat volatile, with per capita funding falling in the decades leading up

to the recent food crisis (Alston & Pardey, 2014). The food price rises since

2007 have stimulated new investments. However, whether this interest will be

sustained remains to be seen. Overall, progress from conventional breeding is

becoming more di�cult. Transgenic (genetic modification) technologies have a

proven record of more than a decade of safe and environmentally sound use,

and thus o↵er huge potential to address critical biotic and abiotic stresses in

4These technologies include conservation farming approaches based on no-tillage, the ge-
netic modification technology revolution, and information and communication technologies
for more e�cient and precise management of modern inputs.

5These best practices include the adoption of better risk management, market development,
rural finance, farmers’ organizations, and the provision of advisory services to farmers.
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the developing world. However, expected yield gains, costs of further developing

these technologies, and the political acceptance of genetically modified foods are

all highly uncertain.

To quantify the extent to which the advances in crop technology can fur-

ther boost agricultural yields over the next century, we first need to assess the

magnitude of existing yield gaps at the global scale. In a comprehensive study,

Lobell et al. (2009) report a significant variation in the ratios of actual to

potential yields for major food crops across the world, ranging from 0.16 for

tropical lowland maize in Sub-Saharan Africa to 0.95 for wheat in Haryana,

India. For the purposes of this study, we employ the results of Licker et al.

(2010), who conduct comprehensive yield gap analysis using global crop dataset

of harvested areas and yields for 175 crops on a 0.5� geographic grid of the

planet for the year 2000. Using these estimates, we calculate the global yield

gap as the grid-level output-weighted yield gap of the four most important food

crops (wheat, maize, soybeans, and rice). The resulting estimate suggests that

average yields are 53% of potential yields, which is close to the median estimates

by Lobell et al. (2009). As a further robustness check we employ the Decision

Support System for Agrotechnology Transfer (DSSAT) crop simulation model

(Jones et al. , 2003), run globally on a 0.5 degree grid in the parallel System

for Integrating Impacts Models and Sectors (pSIMS; Elliott et al. 2014b) to

simulate yields of the same four major food crops under best agricultural man-

agement conditions and compare simulated yields to their observed yields. The

resulting yield gap estimates were not substantially di↵erent.

In the optimistic (i.e., “good”) state of advances in crop technology, we

assume that yields continue to grow linearly throughout the coming century,

eliminating the yield gap by 2100. This high yield scenario rests on the as-

sumption of continued strong growth in investment in agricultural research and

development, widespread acceptance of genetically modified crops, continuing

institutional reforms in developing countries, and public and private invest-

ments in the dissemination of new technologies. The erosion of any one of these

component assumptions will likely result in a slowing of crop technology im-

provements. And there are some grounds for pessimism. In a comprehensive

statistical analysis of historical crop production trends, Grassini et al. (2013)

note that

“despite the increase in investment in agricultural R&D and educa-

tion [...] the relative rate of yield gain for the major food crops has
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decreased over time together with evidence of upper yield plateaus

in some of the most productive domains. For example, investment

in R&D in agriculture in China has increased threefold from 1981

to 2000. However, rates of increase in crop yields in China have re-

mained constant in wheat, decreased by 64% in maize as a relative

rate and are negligible in rice. Likewise, despite a 58% increase in

investment in agricultural R&D in the United States from 1981 to

2000 (sum of public and private sectors), the rate of maize yield gain

has remained strongly linear.”

To capture the possibility of much slower technological improvement in the

coming century, we specify two more pessimistic scenarios. In the “medium”

state of technology, rather than closing the yield gap by 2100, average yields

in 2100 are just three-quarters of yield potential at that point in time. In the

“bad” state of technology, there is no technological progress, and the crop yields

stay the same as at the beginning of the coming century. This is the path on

which we begin the simulation in 2004. As previously noted, we then specify

probabilities with which the crop technology index evolves across the di↵erent

states of technology.

B.1.2 Uncertainty in Climate Change Impacts

In addition to crop technology uncertainty, there is great uncertainty about

the physical environment in which this technology will be deployed. In partic-

ular, long-run changes in both temperature and precipitation are likely to have

an important impact on the productivity of land in agriculture (IPCC, 2014),

and therefore, the global pattern of land use. Quantification of the impact of

climate change on agricultural yields requires coming to grips with three inter-

connected factors (Alexandratos, 2011). First, there is significant uncertainty in

future GHG concentrations along the long-run growth path of the global econ-

omy. Second, the General Circulation Models (GCMs) developed by climate

scientists to translate these uncertain GHG concentrations into climate out-

comes disagree about the spatially disaggregated deviations of temperature and

precipitation from baseline levels. Finally, there is significant uncertainty in the

biophysical models used to determine how changes in temperature and precip-

itation will a↵ect plant growth and the productivity of agriculture in di↵erent
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agro-ecological conditions. The impact of climate change on food crop yields

depends critically on their phenological development, which, in turn, depends

on the accumulation of heat units, typically measured as growing degree days

(GDDs). More rapid accumulation of GDDs as a result of the climate change

speeds up phenological development, thereby shortening key growth stages, such

as the grain filling stage, hence reducing potential yields (Long, 1991). How-

ever, rising concentrations of CO2 in the atmosphere result in an increase in

potential yields due to improved water use e�ciency, often dubbed the “CO2

fertilization e↵ect” (Long et al. , 2006). Sorting out the relative importance of

these e↵ects and achieving greater confidence in evaluations of climate impacts

on agricultural yields remains an important research question in the agronomic

literature (Cassman et al. , 2010; Rosenzweig et al. , 2014).

To quantify the uncertainty in climate impacts on agricultural yields we

follow the approach of Rosenzweig et al. (2014), who have recently conducted

a globally consistent, protocol-based, multi-model climate change assessment

for major crops with the explicit characterization of uncertainty. To quantify

the uncertainty of impacts of temperature increases due to climate change on

potential crop yields we obtain results of four crop simulation models: GEPIC

(Liu et al. , 2007), LPJmL (Bondeau et al. , 2007), pDSSAT (Jones et al. ,

2003), and PEGASUS (Deryng et al. , 2011).6 All models are run globally

on a 0.5� grid over the period between 1971 and 2099 and weighted by the

agricultural output of four major food crops (maize, soybeans, wheat, and rice).

To ensure simulation results comparability with the structural parameters of

FABLE model all models are run under Representative Concentration Pathways

6.0W/m2 (RCP6) GHG forcing scenario (Moss et al. , 2008). We also consider

alternative assumptions on CO2 fertilization e↵ects. To quantify uncertainty in

temperature increases due to climate change we employ outputs for five global

climate models (GCM): GFDL-ESM2M (Dunne et al. , 2013), HadGEM2-ES

(Collins et al. , 2008), IPSL-CM5A-LR (Dufresne et al. , 2012), MIROC-ESM-

CHEM (Watanabe et al. , 2011), and NorESM1-M (Bentsen et al. , 2012).

For each of the simulations, we fit a linear trend in order to parsimoniously

characterize the evolution of crop yields in the face of climate change over the

6Our results are based on four crop simulation models though Rosenzweig et al. (2014)
consider seven crop simulation models. The remaining three models have fewer crops and/or
temporal frames for model baseline and are thus omitted. Rosenzweig et al. (2014) find
that five models, including GEPIC, LPJmL, and pDSSAT models considered in this analysis,
yield broadly similar predictions. One model (LPJ-GUESS) not covered here has much higher
variation in predicted crop yields under di↵erent climate scenarios. Our results may, therefore,
understate the range of uncertainty of climate change impacts on potential crop yields.
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Figure B.1: Changes in Potential Crop Yields under RCP 6 Scenario in 2100

coming century.

Figure B.1 summarizes simulation results for four crop simulation models

and five climate models (with and without fertilization e↵ects) in 2100, nor-

malized relative to assumed yield potential in the absence of climate change.

There is significant heterogeneity in terms of both direction and magnitude of

climate impacts on agricultural yields across global climate models when the

CO2 fertilization e↵ect is considered.7 Regardless of the chosen climate model,

for the scenario with fertilization e↵ects, two out of four crop simulation models

(LPJmL and pDSSAT) predict a moderate increase in potential yields (5-15

percent), whereas the PEGASUS model predicts a large decline in potential

7Field trials show that higher atmospheric CO2 concentrations enhance photosynthesis and
reduce crop water stress (Deryng et al. , 2016). This fertilization e↵ect interacts with other
factors such as nutrient availability, and current-generation crop models are characterized by
large uncertainties regarding net CO2 fertilization potentials at larger spatial scales. In line
with previous studies (Rosenzweig et al. , 2014; Elliott et al. , 2014a; Jägermeyr et al. , 2016)
we use a constant CO2 case as pessimistic assumption regarding climate change e↵ects, and a
transient CO2 case according to the RCP concentration pathways to reflect a more optimistic
case.
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yields (20-30 percent). The GEPIC model predicts that on average crop yields

will be little changed, showing a small increase in crop yields for some climate

models and a small decline for other models. The predictions of LPJmL and

pDSSAT models are reversed when CO2 fertilization e↵ects are removed, show-

ing a decline of about 10-15 percent in potential yields. The PEGASUS model

predicts an even larger decline in potential yields (30-35 percent), whereas the

predictions of GEPIC model show a moderate decline of about 5-10 percent in

potential yields.

Given a large variation in model predictions, we construct 5 states for po-

tential crop yields under uncertain climate change. These states correspond to

quintiles of the distribution of di↵erent model outcomes for potential crop yields

by 2100. Under two optimistic states of the world, we observe a 2 and 15 percent

increases in potential crop yields relative to model baseline whereby significant

CO2 fertilization e↵ects o↵set the negative e↵ects of climate change. For the

next two states, we see a 15 and 19 percent declines in potential crop yields

relative to model baseline whereby CO2 fertilization e↵ects are either small or

nonexistent, and the negative e↵ects of climate change tend to prevail. Finally,

under most pessimistic states of the world, drastic adverse e↵ects of climate

change combined with the absence of any CO2 fertilization e↵ects result in a 36

percent decline in potential crop yields relative to model baseline.
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C.0.3 Transition probabilities

The five possible values of the climate state J1,t are J1,1 = 0.64, J1,2 = 0.85,

J1,3 = 0.89, J1,4 = 1.02, and J1,5 = 1.15, and its probability transition matrix

is

P1 =

2

6666664

0.5 0.25

0.5 0.5 0.25

0.25 0.5 0.25

0.25 0.5 0.5

0.25 0.5

3

7777775

where P1,i,j represents the probability from the j-th value of J1,t to the i-th

value, for 1  i, j  5. The three possible values of the technological state J2,t

are J2,1 = 1.45, J2,2 = 1.675, and J2,3 = 1.9, and its probability transition

matrix is

P2 =

2

64
0.4423 0.1416 0.1311

0.4139 0.669 0.4367

0.1438 0.1894 0.4322

3

75 ,

where P2,i,j represents the probability from the j-th value of J2,t to the i-th

value for 1  i, j  3. We assume that J2,t is independent of J1,t.

C.0.4 Model

After we add the risks, the state vector becomes

S := (L,X,J)

where Jt = (J1,t, J2,t). And J is a Markov chain so it can be represented as

Jt+1 = GJ
t (Jt, ✏t) where ✏t is a vector of shocks with zero means. The problem

is

max
a

E
( 1X

t=0

�tU(St,at)

)
(C.1)

subject to

Lt+1 = GL
t (St,at)

Xt+1 = GX
t (St,at)

Jt+1 = GJ
t (Jt, ✏t)
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and at 2 Dt(St) representing the feasibility constraints, that is, inequality con-

straints and the equations other than the above transition laws. The above

transition laws are just a special case of

St+1 = Gt(St,at, ✏t)

in the notations of Section 2, so we can implement our ENLCEQ method to

solve the dynamic stochastic programming problem. Since our time of interest

is T = 100 years, in ENLCEQ we choose bT = 400 so that a larger bT will have

little change on our solution at the first 100 years.

In the step 2 of Algorithm 1 for solving the solution at time s, we replace ✏t

by its zero mean to have St+1 = Gt(St,at, 0), that is, Jt+1 = GJ
t (Jt, 0). But

this Jt+1 = GJ
t (Jt, 0) is only for simplicity in notations. In fact, since J is a

Markov chain, we replace Jt by its mean conditional on the realized value of Js

(i.e., its certainty equivalent approximation):

[J1⇡1,t,s, J2⇡2,t,s]

for all t � s, where J1 = (J1,1, ...,J1,5), J2 = (J2,1,J2,2,J2,3), ⇡1,t,s and ⇡2,t,s

are two column vectors representing probability distributions of J1,t and J2,t

conditional on the realized values of J1,s and J2,s respectively. If the realized

values of J1,s and J2,s are J1,i and J2,j respectively, then we have ⇡1,t,s =

P t�s
1 ⇡1,s,s and ⇡2,t,s = P t�s

2 ⇡2,s,s, where ⇡1,s,s is a length-5 column vector with

1 at the ith element and 0 everywhere else, and ⇡2,s,s is a length-3 column vector

with 1 at the jth element and 0 everywhere else.

C.1 Model Equations, Variables and Parame-

ters

C.1.1 Equations

Land Use

L =
X

i=A,P,C,N,R

Li
t (C.2)

LN
t+1 = LN

t ��N,A
t ��N,R

t +�C,N
t (C.3)

15



LA
t = LA,c

t + LA,b2
t (C.4)

LA
t+1 = LA

t +�N,A
t ��A,P

t +�C,A
t (C.5)

LP
t+1 = LP

t +�A,P
t (C.6)

LR
t+1 = LR

t +�N,R
t (C.7)

LC
t =

vmaxX

v=1

LC
v,t, (C.8)

LC
v+1,t+1 = LC

v,t ��C,H
v,t , v < vmax � 1 (C.9)

LC
vmax,t+1 = LC

vmax,t ��C,H
vmax,t ��C,N

t + LC
vmax�1,t ��C,H

vmax�1,t, (C.10)

LC
1,t+1 = �C,C

t (C.11)

�C,H
v,t  LC

v,t, v < vmax

�C,H
vmax,t +�C,N

t  LC
vmax,t

�C,A
t =

vmaxX

v=1

�C,H
v,t ��C,C

t

Fossil Fuels

XF
t+1 = XF

t ��F,E
t ��F,n

t +�F,D
t (C.12)

Other Primary Resources

XO
t = XO

0


↵o,l ⇧t

⇧0
+
�
1� ↵o,l

�
(1 + o,2)t

�
(C.13)
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Intermediate Products

xp
t = ✓pt�

F,E
t (C.14)

xn
t = ✓n�F,n

t (C.15)

xn
t = xn,c

t + xn,b2
t (C.16)

xc
t = ✓ct

⇣
↵n
⇣
LA,c
t

⌘⇢n

+ (1� ↵n) (xn,c
t )

⇢n

⌘ 1
⇢n

(C.17)

xc,b2
t = ✓c,b2t

⇣
↵n
⇣
LA,b2
t

⌘⇢n

+ (1� ↵n)
⇣
xn,b2
t

⌘⇢n
⌘ 1

⇢n
(C.18)

xb1
t = ✓b1xc,b

t (C.19)

xb2
t = ✓b2

✓�
↵b2
�✓b2,K

t (K)⇢b2 +
�
1� ↵b2

� ⇣
xc,b2
t

⌘⇢b2
◆ 1

⇢b2

(C.20)

xl
t = ✓P

⇣
↵l
�
LP
t

�⇢l
+
�
1� ↵l

� ⇣
xc,l
t

⌘⇢l
⌘ 1

⇢l
(C.21)

xw
t =

vmaxX

v=1

✓wv,t�
C,H
v,t (C.22)

Final Goods and Services

Y f
t = ✓ft

�
xc � xc,b � xc,l

�
(C.23)

Y e
t = ✓et

⇣
↵e
�
xb1
t

�⇢e
+ (1� ↵e)

�
xp
t + xb2

t

�⇢e
⌘ 1

⇢e
(C.24)

Y l
t = ✓ltx

l
t, (C.25)

Y w
t = ✓yw

t xw
t (C.26)
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Y r
t = ✓r

2

4
X

i=A,P,C

↵i,r
�
Li
t

�⇢r +

0

@1�
X

i=A,P,C

↵i,r

1

A�LN
t + ✓RLR

t

�⇢r

3

5

1
⇢r

(C.27)

Y o
t = ✓o,1t

2

664

XO
t � 1

✓o
0
[co,c xc

t
At

+ co,cb x
c,b2
t

✓c,b2
t

+ co,f Y f
t

✓f
t

+ co,pxp
t + co,nxn

t + co,bxb1
t

+co,b2xb2
t + co,lxl

t + co,yl ✓
l
0Y

l
t

✓l
t

+ co,wt �C,H
t + co,ywxw

t

+co,rLR
t + cp�C,C

t + CN
t + CR

t + CF
t + CH

t + CP
t + CC,N

t ]

3

775

(C.28)

yt =
⇣
yft , y

l
t, y

e
t , y

w
t , y

r
t , y

o
t

⌘
=
⇣
Y f
t , Y l

t , Y
e
t , Y

w
t , Y r

t , Y
o
t

⌘
/⇧t (C.29)

Technology (deterministic)

At =
ATA0ect

AT +A0 (ect � 1)
(C.30)

✓wv,t =

8
<

:
0.00001 if v  v

✓
w
v (1 + wv t) if v > v

, ✓
w
v = exp

✓
 a �

 b

(v � v)

◆
(C.31)

✓it = ✓i0(1 + i)t, i = f, e, l, yw, o (C.32)

Technology (stochastic)

At =
AT (J1,t, J2,t)A0ect

AT (J1,t, J2,t) +A0 (ect � 1)
(C.33)

Costs

CN,A,R
t = ⇠n0

⇣
�N,A

t +�N,R
t

⌘
+ ⇠n1

⇣
�N,A

t +�N,R
t

⌘2
(C.34)

CN,R
t = ⇠R0 �

N,R
t + ⇠R1

⇣
�N,R

t

⌘2
(C.35)

CF
t = ⇠F1

⇣
�F,E

t +�F,n
t

⌘2✓XF
0 +�F,D

XF
t +�F,D

◆
(C.36)

CH
t = ⇠H0

⇣
�C,H

t ��C,C
t

⌘2
+
X

v

⇠H1
LC
v,t+1 + ⇠H2

(C.37)
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CA,P
t = ⇠P1

⇣
�A,P

t

⌘2
(C.38)

CC,N
t = ⇠C,N

0 �C,N
t + ⇠C,N

1

⇣
�C,N

t

⌘2
(C.39)

Preferences

u(y) =
C (y)1��

1� �
(C.40)

log (C(y)) =
X

q=f,l,e,w,r,o

✓
↵q + �qC(y)
1 + C(y)

◆
log
�
yqt � yq

�
(C.41)

Population

⇧t =
⇧T⇧0e

⇡t

⇧T +⇧0 (e
⇡t � 1)

(C.42)

Welfare

⌦ = E
( 1X

t=0

�tU(St,at)

)
. (C.43)

with U(St,at) = u(yt)⇧t, S := (L,X,J), and

at := (�N,A
t ,�N,R

t ,�C,N
t ,�A,P

t ,�C,A
t ,�C,H

1,t , ...,�C,H
vmax,t,�

C,C
t ,�F,E

t ,�F,n
t , LA,F

t , LA,B
t ,xt,yt).
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C.1.2 Tables

Table C.1: Model Exogenous Variables

Parameter Description Units

Exogenous Variables

�F,D
t Flow of Newly Discovered Fossil Fuels trillion toe

XO
t Other Primary Goods trillion USD

At Crop Technology Index
✓c,b2t 2G biofuels Crop Technology Index
✓b2,Kt 2G Biofuels Fixed Factor Decay Index
✓wv,t Logging Productivity Index

✓ft Food Processing Productivity Index
✓et Energy E�ciency Index
✓lt Livestock Processing Productivity Index

✓y
w

t Wood Processing Productivity Index
✓ot Total Factor Productivity Index
CF

t Fossil Fuel Extraction Cost share of XO
t

CN
t Natural Land Access Cost share of XO

t

CR
t Natural Land Protection Cost share of XO

t

CH
t Managed Forest Conversion Cost share of XO

t

CP
t Pasture Land Conversion Cost share of XO

t

CC,N
t Natural Land Restoration Cost share of XO

t

⇧t Population billion people
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Table C.2: Model Endogenous Variables

Parameter Description Units

LA
t Agricultural Land Area GHa

LA,c
t Agricultural Land Area, food crops GHa

LA,b2
t Agricultural Land Area, 2G biofuels crops GHa

LP
t Pasture Land Area GHa

LC
t Commercial Forest Land Area GHa

LN
t Unmanaged Natural Land Area GHa

LR
t Protected Natural Land Area GHa

�N,A
t Flow of Deforested Natural Land GHa

�N,R
t Flow of Protected Natural Land GHa

�C,N
t Flow of Restored Natural Land GHa

�C,A
t Managed Forest Land Converted to Agriculture GHa

�C,C
t Replanted Forest Land Area GHa

�C,H
v,t Harvested Forest Land Area of Vintage v GHa

�A,P
t Agricultural Land Converted to Pasture GHa

XF
t Stock of Fossil Fuels Ttoe

�F,E
t Flow of Fossil Fuels Converted to Petroleum Ttoe

�F,n
t Flow of Fossil Fuels Converted to Fertilizers Ttoe

xp
t Petroleum Products Gtoe

xn
t Fertilizers Gton

xc
t Food Crops Gton

xc,b2
t 2G Biofuels Crops Gton

xb1
t 1G Biofuels Gtoe

xb2
t 2G Biofuels Gtoe

xl
t Livestock Gtoe

xw
t Raw Timber Gton

Y f
t Services from Processed Food billion USD

Y e
t Energy Services billion USD

Y l
t Services from Processed Livestock billion USD

Y w
t Services from Processed Timber billion USD

Y r
t Eco-system Services billion USD

Y o
t Other Goods and Services trillion USD
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Table C.3: Baseline Parameters

Parameter Description Units Value

Population

⇧0 Population in 2004 billion people 6.39
⇧T Population in time T billion people 10.1
⇡ Population Convergence Rate 0.042

Land Use

L Total Land Area billion Ha 8.56
LA
0 Area of Agricultural Land in 2004 billion Ha 1.53

LP
0 Area of Pasture Land in 2004 billion Ha 2.73

LC
0 Area of Commercial Forest Land in 2004 billion Ha 1.62

LN
0 Area of Unmanaged Natural Land in 2004 billion Ha 2.47

LR
0 Area of Protected Natural Land in 2004 billion Ha 0.207

⇠n0 Access Cost Function Parameter 0.6
⇠n1 Access Cost Function Parameter 105
⇠R0 Protection Cost Function Parameter 4.5
⇠R1 Protection Cost Function Parameter 400
⇠P1 Pasture Conversion Cost Function Parameter 170
⇠H0 Forest Conversion Cost Function Parameter 80
⇠H1 Forest Conversion Cost Function Parameter 0.004
⇠C,N
0 Natural Land Restoration Cost Parameter 0.8
⇠C,N
1 Natural Land Restoration Cost Parameter 400

Fossil Fuels

XF
0 Endowment of Fossil fuels in 2004 trillion toe 0.343

�F,D Flow of Newly Discovered Fossil Fuels trillion toe 0.008
⇠F1 Fuel Extraction Cost Function Parameter 2000

Other Primary Goods

XO
0 Endowment of Other Primary Goods in 2004 USD ⇥ 1013 3.16

o,X Growth Rate of Physical Capital 0.0035
↵o,l Share of demographic factors in growth of XO

t 0.39

Intermediate Products

✓p Petroleum Conversion Factor per toe of �F,E
t 0.5

co,p Petroleum Conversion Cost share of XO
t 0.0157

22



Table C.3: Baseline Parameters (continued)

Parameter Description Units Value

✓n Fertilizer Conversion Factor Tton / Ttoe 1.071
co,n Fertilizer Conversion Cost share of XO

t 0.0021
✓b1 1G Biofuels Conversion Rate toe/ton 0.283
✓b2 2G Biofuels Conversion Rate toe/ton 0.467
K 2G Biofuels Fixed Factor Index 0.005
co,b1 1G Biofuels Conversion Cost share of XO

t 0.00025
co,b2 2G Biofuels Conversion Cost share of XO

t 0.00033
an Share of Agricultural Land in CES function 0.55
⇢n CES Parameter for Agricultural Land and

Fertilizers
0.123

A0 Crop Technology Index in 2004 13.89
c Logistic Growth Rate of Crop Technology Index 0.025
co,c Food Crop Production Cost share of XO

t 0.016
✓c,b20 2G Biofuels Crop Technology Index in 2004 14.89
b2 2G Biofuels Fixed Factor Decay Rate 0.05
↵b2 Fixed Factor Cost Share in 2G Biofuels

Production
0.6

⇢b2 CES Parameter for Fixed Factor and
Agricultural
Land

-1.5

co,c 2G Biofuels Crops Production Cost share of XO
t 0.022

✓P Livestock Technology Index in 2004 0.69
al Share of Pasture Land in CES function 0.35
⇢l CES Parameter for Pasture Land and Feed -0.33
co,l Livestock Production Cost share of XO

t 0.0055
 a Merchantable Timber Yield Parameter 1 5.62
 b Merchantable Timber Yield Parameter 2 76.5
v Minimum Age for Merchantable Timber Years 11
wv Timber Yield Gains of Vintage v Share of Yield 0 0.011
cp Forest Planting Cost share of XO

t 0.0001
co,w Forest Harvesting Cost share of XO

t 0.0021

Final Goods and Services

✓f0 Food Processing Technology Index in 2004 1.5
f Food Processing Technology Index Growth

Rate
0.0225

co,f Food Processing Cost share of XO
t 0.015

✓l0 Livestock Processing Technology Index in 2004 1.7
l Livestock Processing Technology Growth Rate 0.0025
co,yl Livestock Processing Cost share of XO

t 0.0068
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Table C.3: Baseline Parameters (continued)

Parameter Description Units Value

✓e0 Energy Technology Index in 2004 1.195
e Energy Technology Index Growth Rate 0.0225
⇢e CES Parameter for Petroleum and Biofuels 0.5
↵e Share of Biofuels in CES Function 0.09
✓yw
0 Timber Processing Technology Index in 2004 1.52
yw Timber Processing Technology Growth Rate 0.0225
co,yw Timber Processing Cost share of XO

t 0.0224
✓r Ecosystem Services Technology Index 0.71
↵A,r Share of Agricultural Land in CES Function 0.02
↵P,r Share of Pasture Land in CES Function 0.14
↵C,r Share of Managed Forest Lands in CES

Function
0.26

⇢r CES Parameter for Ecosystem Services 0.123
✓R E↵ectiveness Index of Protected Lands 10
co,r Cost of Recreation Services 0.0296
✓o0 Total factor Productivity Index in 2004 1.854
o Total Factor Index Growth Rate 0.0225

Preferences and Welfare

↵f AIDADS Marginal Budget Share at Subsistence
Income for Services from Processed Food

0.189

↵l AIDADS Marginal Budget Share at Subsistence
Income for Services from Processed Livestock

0.035

↵e AIDADS Marginal Budget Share at Subsistence
Income for Energy Services

0.112

↵w AIDADS Marginal Budget Share at Subsistence
Income for Services from Processed Timber

0.036

↵r AIDADS Marginal Budget Share at Subsistence
Income for Ecosystem Services

0.049

↵o AIDADS Marginal Budget Share at Subsistence
Income for Other Goods and Services

0.579
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Table C.3: Baseline Parameters (continued)

Parameter Description Units Value

�f AIDADS Marginal Budget Share at High
Income for Services from Processed Food

0.028

�l AIDADS Marginal Budget Share at High
Income for Services from Processed Livestock

0.011

�e AIDADS Marginal Budget Share at High
Income for Energy Services

0.049

�w AIDADS Marginal Budget Share at High
Income for Services from Processed Timber

0.032

�r AIDADS Marginal Budget Share at High
Income for Ecosystem Services

0.104

�o AIDADS Marginal Budget Share at High
Income for Other Goods and Services

0.776

�f AIDADS Subsistence Parameter for Processed
Food

0.45

�l AIDADS Subsistence Parameter for Processed
Livestock

0.003

�e AIDADS Subsistence Parameter for Energy
Services

0.026

�w AIDADS Subsistence Parameter for Processed
Timber Products

0.027

�r AIDADS Subsistence Parameter for Ecosystem
Services

0.028

�o AIDADS Subsistence Parameter For Other
Goods and Services

0.346

� Risk Aversion Parameter 2
� Social Discount Rate 0.95

25



D.1 Supplementary Figures
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Figure D.1: Consumption of Fertilizers and Biofuels
26



D.1 Error Checking

For a simulated path i, at the current time s, we use the step 2 of Algorithm

1 to find the optimal decision ais at its current state Si
s. Its next state in the

original stochastic model (1) is Gs(Si
s,a

i
s, ✏s) which is random and dependent

on ✏s 2 ⇥, where ⇥ represents the set of all possible vectoral values of ✏s. The

associated Euler equation for the stochastic model is

�s = �Es

✓
rSs+1Gs+1(Gs(S

i
s,a

i
s, ✏s),as+1, ✏s+1)�s+1

+rSs+1Hs+1(Gs(S
i
s,a

i
s, ✏s),as+1)µs+1

◆
(D.1)

where rSs+1 is the gradient operator over Ss+1, �t�t is the multiplier (a column

vector) of the constraint St+1 = Gt(St,at, ✏t) and �tµt is the multiplier (a col-

umn vector) of the feasibility constraints at 2 Dt(St) which are represented by

Ht(St,at) � 0 here.8 In the literature, the multipliers are often substituted by

marginal utilities or some other expressions derived from Karush–Kuhn–Tucker

conditions, but we keep them in the equation as such substitutions are often

complicated (e.g., in our examples) and we can directly get the multipliers from

numerical optimization solvers. The multipliers and as+1 can be approximated

by the solutions in the deterministic model (2) at their corresponding states.

For example, we compute Si,j
s+1 = Gs(Si

s,a
i
s, ✏

j
s) for every possible ✏js 2 ⇥ and

then use the step 2 of Algorithm 1 to find the optimal decision ai,js+1 at its asso-

ciate state Si,j
s+1 at time s+ 1 and their corresponding multipliers, and then we

can compute the expectation in equation (D.1) as the conditional probability

distribution of ✏s is given. When ✏s is a continuous random variable vector, we

can use its quadrature nodes ✏js and then implement quadrature rules to esti-

mate the expectation in equation (D.1). Thus, for the simulated path i, we can

compute the normalized Euler error at time s:

E i
s =

�����Es

✓
rSs+1Gs+1(Gs(S

i
s,a

i
s, ✏s),as+1, ✏s+1)

�s+1

�s

+rSs+1Hs+1(Gs(S
i
s,a

i
s, ✏s),as+1, ✏s+1)

µs+1

�s

◆
� 1

����

8An equality constraint f(x) = 0 can be written as a combination of f(x) � 0 and �f(x) �
0.
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where 1 is a vector of ones, �s+1

�s
and µs+1

�s
are elementwise divisions, and k·k is

a norm operator. Note that the normalized Euler error is unit free.

For our stochastic FABLE model, we find that the approximate L1 error of

the first 100 years solutions among 1,000 simulated paths, defined as

max
1s100

 
1

1000

1000X

i=1

E i
s

!
,

is only 8.6⇥ 10�4, and the corresponding approximate L1 error, defined as

max
1s100

✓
max

1i1000
E i
s

◆
,

is only 0.02. Thus, we see that ENLCEQ solves our stochastic model within an

acceptable accuracy.

D.2 An Illustrative Example

Below we use a simple optimal growth model to illustrate ENLCEQ. We assume

the total factor of productivity, At, is a Markov chain. It has three possible

values: A1 = 0.9, A2 = 1.0, and A3 = 1.1. Its transition probability matrix is

P =

2

64
0.8 0.2

0.2 0.6 0.2

0.2 0.8

3

75 .

We use At+1 = GA(At, ✏t) to represent the transition law of At, where ✏t is

a random variable with zero mean. We solve the following optimal growth

problem:

max E
( 1X

t=0

�tu(ct)

)
(D.2)

s.t. kt+1 = (1� �)kt +Atk
↵
t � ct,

k0 = 1, A0 = 1,

where ct is consumption at time t, � = 0.96 is the discount factor, kt is capital,

� = 0.1 is the depreciation rate, ↵ = 0.3, and u(c) = �c�1 is the utility

function. Assume that we are interested in the solutions in the first 20 periods

(i.e., T = 20). Here in the notations of Section 2, S := (k,A) is the vector of
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state variables, a := c is the decision variable, and the transition laws are

kt+1 = Gk(kt, at) = (1� �)kt +Atk
↵
t � ct

At+1 = GA(At, ✏t)

which can be written as St+1 = G(St,at, ✏t).

In ENLCEQ, we choose bT = 200 which has been large enough for the so-

lutions in the periods of our interest (i.e., the first 20 periods). If we are in-

terested in solutions at more periods, then we can also increase bT . In the step

2 of Algorithm 1 for solving problems at time s, we let St+1 = G(St,at, 0),

that is, At+1 = GA(At, 0), which in fact means that we replace At by its

mean conditional on the realized values of As: A⇡t,s, for all t � s, where

A = (A1,A2,A3) and ⇡t,s is a column vector representing the probability dis-

tribution conditional on the realized values of As. If the realized values of As is

Ai, we have ⇡t,s = P t�s⇡s,s, where ⇡s,s is a length-3 column vector with 1 at

the ith element and 0 everywhere else.

In the GAMS code attached in the end of the appendix, we compute 1,000

simulated paths of the first 20 periods which are the periods of interest. It

took 15 minutes on a laptop, much slower than NLCEQ, as ENLCEQ solves

20,000 optimization methods while NLCEQ just needs to solve a few (e.g., 33

optimization problems to obtain a degree-10 Chebyshev polynomial of k for

each of three values of A to approximate the optimal policy functions) for this

simple illustrative case. But as discussed in Section 2, ENLCEQ can solve many

problems that NLCEQ cannot or is less e�cient or less accurate.

Each simulation path i from ENLCEQ contains a pair of (kENLCEQ
t,i , AENLCEQ

t,i , cENLCEQ
t,i )

at each time t, where AENLCEQ
t,i is simulated exogenously. We also apply value

function iteration to solve this simple problem and then get the optimal policy

function for consumption: CV FI(k,A), which is approximated by a degree-20

Chebyshev polynomial of k on [0.5, 5] for each possible value of A. We then

compare cENLCEQ
t,i and CV FI(kENLCEQ

t,i , AENLCEQ
t,i ) for all 1  i  1000 and

t  20. We find that the approximate L1 relative error is 3.7 ⇥ 10�3 and the

approximate L1 relative error is 5.5 ⇥ 10�3. This tells us that ENLCEQ can

achieve 2 to 3 digit accuracy, which is consistent with the accuracy of NLCEQ

in Cai et al. (2017).
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